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Motion of Curves Constrained on Surfaces
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The level-set method has been successfully applied to a variety of problems that
deal with curves inR2 or surfaces inR3. We present here a combination of these two
cases, creating a level-set representation for curves constrained to lie on surfaces.
We study primarily geometrically based motions of these curves on stationary sur-
faces while allowing topological changes in the curves (i.e., merging and breaking)
to occur. Applications include finding geodesic curves and shortest paths and curve
shortening on surfaces. Further applications can be arrived at by extending those for
curves moving inR2 to surfaces. The problem of moving curves on surfaces can
also be viewed as a simple constraint problem and may be useful in studying more
difficult versions. Results show that our representation can accurately handle many
geometrically based motions of curves on a wide variety of surfaces while automati-
cally enforcing topological changes in the curves when they occur and automatically
fixing the curves to lie on the surfaces. The method can also be easily extended to
higher dimensions. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The problem of moving curves on surfaces is important in many applications. It can be
thought of as a model constraint problem. Also, since it is an extension of curve motion in
R2, we may be able to extend the applications found there to surfaces. Such work includes
those on geometrically based motions, image processing, two-phase flow, and materials
science (see [21]). We mainly consider geometrically based motions here since they are an
integral part of all of the other applications. Curves on surfaces are also useful in the study
of surfaces. Geodesic curves and shortest paths are important elements of a surface and can
be computed using certain geometrically based motions of curves. We allow topological
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changes to occur in the curves, as this is useful in many of the applications we have
mentioned.

One obvious way to move curves on a surface is by using a front-tracking algorithm. This
is where discrete points coming from a parametrization of the curves are evolved according
to the flow (see, e.g., [12]). The main problem with this approach comes in finding when
topological changes occur and enforcing the change when it does, a difficult problem to
handle even for curves inR2. For this purpose, level-set-based methods are preferable since
topological changes are automatically taken care of by the representation. Other issues in
front tracking include keeping the curve on the surface for all time and reparametrization
to preserve accuracy and remove stiffness. Thus, much of the work on moving curves on
surfaces does not use this approach.

Previous work on moving curves on surfaces has mostly been confined either to specific
motions or to specific surface types. In [8], Chopp studied geodesic curvature motion of
curves on manifolds by using a level-set approach. This motion is also known as curve short-
ening or heat flow on isometric immersion (see [15]). Chopp’s method involved computing
on simply connected, coordinate patches of the manifold projected intoR2. This algorithm
works for general manifolds as long as the patches are given. Finding the coordinate patches,
however, is in general difficult. In [15], Kimmel also studied geodesic curvature flow using
a different approach. He considered a surface given as a graph of a function and evolved
the iso-gray-level contours of a function representing a grayscale image on that surface as
an application to image processing of images painted on surfaces. The algorithm, however,
can only handle surfaces that can be represented as graphs of functions. Other methods
similar to this one can be found in [16, 17], and also in [11], which tackles the problem of
grid generation. In [18], Kimmel and Sethian used a fast marching approach on level-set
functions to compute geodesic paths on surfaces. The surface is triangulated and the method
is a nontrivial extension of the fast marching method introduced in [30]. In particular, it
generalizes the Hamilton–Jacobi version of [30], later derived in [10, 25]. The order of
accuracy, however, is limited to first order and the algorithm becomes a bit more intricate
in the presence of obtuse triangles. We also note that the work in [18], unlike ours, uses
only local and intrinsic geometry to compute geodesic paths on surfaces, which has some
advantages in the case of a surface that goes through itself.

The method we construct is able to handle a wide variety of motions for curves on more
general surfaces as well as to automatically enforce mergings and breakings in the curves.
It can be viewed as an extension of [15] using a level-set approach to more general motions
and surface types. Also, Bertalmioet al. [2] have applied a method of the same flavor to
the specific problem of region tracking. We rederive and extend their results in Section 12.
We now take a closer look at the standard level-set method for curves inR2 and surfaces in
R3, as we will use the ideas there to form our method.

2. STANDARD LEVEL-SET METHOD

The standard, or original, level-set method [23] has been widely used to study curves
in R2 and surfaces inR3. In this method, curves are represented by the zero level sets of
real-valued functions onR2 and surfaces by the zero level sets of real-valued function on
R3. These particular functions are called level-set functions. In studying moving curves and
surfaces, the level-set function is allowed to depend on time. Thus the zero level set at each
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time t represents the curve or surface at that time. Also, the motion of the zero level set can
now be carried out by evolving the level-set function. Usually this evolution is governed
by a partial differential equation. One benefit of evolving the level-set function instead of
just its zero level set is that topological changes in the zero level set will be automatically
enforced. Note that the ability of a curve or surface to be represented as the zero level set of
a function means the curve or surface must be the boundary of an open set. This limits the
types of curves and surfaces a level-set method can handle but does not seem to be overly
restrictive and is a natural setup for problems such as two-phase flow (see, e.g., [29]).

Solving the evolution equation associated to the level-set function usually needs to be
done numerically. For this, a uniform grid (usually) is placed in all of space, usingR2

for curves andR3 for surfaces. Finite-difference schemes are then used to discretize the
evolution equation. An advantage of this approach is the ability to easily construct high-
order numerical discretizations on uniform grids. Efficiency both in memory and in speed
can still be preserved by only storing data and computing near the front [1, 24], though
sometimes at the price of a loss of accuracy.

The main advantage of level-set methods, however, is that mergings and breakings in
the curves are automatically handled by the representation. The time of this happening
does not need to be computed and no extra work is required to enforce the topological
changes, unlike with front-tracking methods. The evolution equation is simply solved in
the same way at every time step up to the desired time. The curve can then be interpolated
from the level-set function at the end of a run, when the curve is then plotted. During
the run, the curve location is not needed and can remain uncomputed. Although ease in
handling topological changes is one of the main reasons for using level-set methods, they
are nonetheless attractive even when topological changes do not occur because of the simple
and accurate finite-difference schemes on uniform grids that can be used. Thus the level-set
method can be easily programmed and used. More on the level-set method can be found in
[21]. All this naturally leads us to attempt to use a level-set-based method for our problem
of curves on surfaces.

2.1. Setup

In tackling the problem of moving curves constrained on surfaces, we begin by using
a level-set formulation to represent the curves and surfaces. Thus given a collection of
surfacesM in R3 and curvesγ on those surfaces, we representM by the zero level set of a
real-valued functionψ onR3 andγ by the intersection of the zero level set of a real-valued
functionφ on R3 with the zero level set ofψ . As before, we call these functions level-set
functions. Since we mainly consider the case whereM is static in time,ψ will not depend
on time. On the other hand, in order to study moving curves on surfaces, we letφ depend on
time. Thus the time evolution ofφ allows us to follow the moving curves, keeping in mind
that the curves at timet are the intersection of the zero level set ofφ at timet and the zero
level set ofψ . In our representation, only a specific class of surfaces, boundaries of open
sets inR3, can be handled by this method. Similarly, only a specific class of curves on the
surfaces, boundaries of open sets onM , can be considered. This implies that there is a notion
of the inside and outside of the curves or surfaces and we take, for definiteness, the inside
to be where the level-set function is negative and the outside to be where it is positive. Once
again, this is especially natural, for example, for curves denoting the interface between two
fluids onM . We also note thatψ andφ need only be defined in a neighborhood of the curves
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and not necessarily in all ofR3. However, for simplicity of exposition, we continue treating
them as functions over all ofR3. The only concern is when we need to slightly modify the
method to obtain optimal efficiency both in speed and in memory usage. This is discussed
in Section 8.1. Finally, we can study constrained flows in other spatial dimensions by taking
ψ andφ to be functions inRn.

Note that our setup is basically the same as in [3] except thatψ is now held fixed in time.
Thus the constrained problem of moving curves on surfaces turns out to be easier, using our
setup, than the unconstrained problem of moving curves inR3. We now develop various
notations and tools for our representation to help simplify and clarify future calculations.

3. PRELIMINARIES

Given a vectorw in R3, let Pw be the orthogonal projection matrix defined by

Pw = I − w ⊗ w|w|2 ,

whereI is the identity matrix. Thus the components of the matrix are

(Pw)i j = δi j −wiw j

|w|2 ,

whereδi j is the Kronecker delta function. Note that forx in M andν the normal vector in
R3 of M at x, Pν projects vectors ontoM at x (i.e., Pν projects vectors onto the tangent
plane ofM at x). Now for X a vector field inR3, we define the differential operatorPX∇
by its components,

(PX∇)i =
3∑

j=1

(
δi j − Xi X j

|X|2
)
∂xj .

Note that this is just the projection matrixPX multiplying the gradient vector operator in
R3. In fact, given a real-valued functionu onR3,

(PX∇)u = PX∇u,

and given a vector fieldY onR3,

PX∇ · Y =
3∑

i=1

(PX∇)i Yi .

We constantly use this notation with the vector fieldX = ∇ψ , which is parallel at each
point inR3 to the normal vector of the level-set surface ofψ that passes through that point.
So given a pointx in R3, P∇ψ projects vectors onto the level-set surface ofψ passing
throughx. Therefore, ifx ∈ M, P∇ψ will project vectors ontoM at x. This is very useful
for putting vector fields onto surfaces. Note especially thatP∇ψ∇u, evaluated onM , is
the projection of the gradient vector∇u in R3 onto M . This turns out to be equivalent to
the surface gradient ofu on M . Similarly, P∇ψ∇ · X, evaluated onM , is equivalent to the
surface divergence ofX on M . We now present a few useful properties of this operator.
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PROPOSITION1. Letv,w, z be vectors, X a vector field, and u a real-valued function,
all in R3. Also let ei denote the i th vector of the standard orthonormal basis ofR3. Then
we have the following identities:

(a) Pwv · z= v · Pwz= Pwv · Pwz.
(b) (PX∇)i u = ∇u · PXei .
(c) P∇u∇ · (P∇u X) = ∇ · (P∇u X|∇u|) 1

|∇u| .

3.1. Projecting R2 Equations onto Surfaces

In the course of studying the motion of curves on surfaces, we need to study partial
differential equations on surfaces. Usually, from work already done using the original level-
set method, we already know the form of the partial differential equation corresponding to
the same type of motion for curves inR2. Thus one easy way to get the correct evolution
equation on the surface would be to change the equation for curves inR2 accordingly (i.e.,
projecting it onto the surface), hopefully preserving its important properties.

Given a pointx on M , we project the form of the equation onto the surface at this point.
Let ν be the normal vector ofM at x and letẽ1, ẽ2, ẽ3 be an orthonormal basis ofR3 with
e3 = ν. Also let ∂̃ i be the derivative corresponding toẽi , i = 1, 2, 3. We can then write the
partial differential equation onM at x by treating the tangent plane atx asR2, where the
form of the equation is known. This means we project all quantities in theR2 equation onto
the tangent plane atx. This just involves changing those quantities to fit the new frameẽ1

andẽ2. Note that this especially involves the surface gradient vector operator defined by

∇Su = ∂̃1uẽ1+ ∂̃2uẽ2,

for u a function onM , and

∇S · X = 〈∂̃1X, e1〉 + 〈∂̃2X, e2〉,

for X a vector field onM . For example, onM and atx, the Laplacian of a functionu takes
the form∂̃1∂̃1u+ ∂̃2∂̃2u, which can be written as∇S · ∇Su, the Laplace–Beltrami operator
applied tou. So in this case,∇ is simply replaced by∇S to get from theR2 Laplacian to
the surface Laplacian. We use this procedure to project other partial differential equations
in R2 onto surfaces. Assuming that the important properties of the equations are preserved
during this transition, this is a quick way to get the evolution equation we want onM .

The main replacement when projectingR2 partial differential equations onto surfaces is,
as we have seen, changing∇ to ∇S. The connection between the surface gradient∇S and
our previous operatorP∇ψ∇ is given by

PROPOSITION2. We have the following properties:

(a) For u a real-valued function inR3,

∇Su = P∇ψ∇u

on M, where∇Su means the surface gradient applied to the restriction of u on M.
(b) For X a vector field inR3 which is tangent to M on M,

∇S · X = P∇ψ∇ · X
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on M, where∇S · X means the divergence of the restriction of X on M with respect to the
surface gradient.

So∇S andP∇ψ∇ are equivalent onM . The difference is thatP∇ψ∇ is easier to deal with
numerically. Because of this, we write all our equations using this form. We also note the
importance of replacing the integral overR2,

∫
R2 dx, with the surface integral,

∫
S d A, which

is equivalent to
∫

R3 δ(ψ)|∇ψ | dx, when projectingR2 equations onto surfaces. Finally, the
R2 equation should be invariant under a rotation of frames inR2, otherwise projecting it
onto the surface may not be a well-defined process.

Thus using all our tools, we can easily write all the geometric quantities of curves on
surfaces in terms of our representation (i.e., in terms ofψ andφ). We see examples of
this later on when dealing with various geometrically based motions. Examples can also be
seen in [3] for the case of unconstrained curves moving inR3. For more on the geometry
of curves and surfaces and partial differential equations, see [9, 27].

4. GENERAL NUMERICS

The main advantage of our approach lies in the effective numerical schemes that can be
used to solve the partial differential equations associated with the motions. In general, we
lay down a uniform grid inR3. In reality, not all the points in this grid need to be used since
we only have to solve the equation in a neighborhood of the curves. This is called a local
level-set method (see, e.g., [1, 24]), which we discuss later. The level-set functionsψ andφ
are either given or created on this grid initially. The partial differential equation forφ is then
solved by using appropriate finite-difference schemes, which the uniform grid lets us easily
create and implement. Also, note that under our representation, the curve will not leave the
surface and so the constraint that the curve lies on the surface is always satisfied. In fact,
the curve location does not need to be determined for our computations but only when the
curve is to be plotted. The plotter we use is the one used in [3], which divides the space into
tetrahedra and uses linear approximations ofψ andφ in each tetrahedron to solve for the
intersection of the zero level sets. This is a simplification of the marching-cubes algorithm
[19]. The level-set method representation also automatically takes care of any merging and
breaking that may occur. The partial differential equations for the evolution are just solved
in the same way until the end time regardless of whether topological changes have occurred
or not. Of course, this ease in handling topological changes is one of the main reasons for
using a level-set-based method. However, the method is still attractive in general because of
its simplicity in using uniform grids and finite-difference schemes. Finally, note that very
complicated surfaces are easily taken care of sinceψ is given as a set of data on grid points.

The numerical algorithm can easily be extended to higher dimensions but because of the
uniform grid, operating in very high dimensions can be overly expensive. Computing inR4

is viable but above this, the method may not be the most efficient.

5. INTRODUCTION TO FLOWS

In the following sections, we use our format to generate and solve evolution equations
for curves on surfaces moving under constant normal flow, geodesic curvature flow, Wulff
flow, and flow under fixed, enclosed surface area. In the process, we develop other uses for
these flows, such as obtaining signed distance functions, geodesics, Wulff minimal curves,
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and Wulff shapes. These flows and their applications all come from flows and applications
for curves inR2 (see [21]). Finally, we extend our results to allow the surface to also move.
We mostly derive the evolution equations in multiple ways, by projecting anR2 equation
onto the surface, by finding a velocity field under which to move the curves, and sometimes
through modified gradient descent minimizing an energy. The first way is quick and easy
but the other ways are more geometric and intuitive.

As notation, we use the term surface to denote the types of surfaces generated by zero
level sets of level-set functions and the term curve to denote the types of curves generated
by the intersections of zero level sets of two level-set functions. Note thus a curve or surface
may actually be a collection of curves or surfaces.

6. FLOW UNDER A GIVEN VELOCITY FIELD

We first consider the simple problem of moving a curve on a surface under a given and
fixed velocity field tangent to the surface. This can later be used on more general motions by
looking at more general forms of velocity fields. The first step is to extend all our quantities
to R3, creatingψ from the surface, an initialφ from the curve, andv from the velocity
field, unless these are already given there initially. There are various numerical methods
that can do this (e.g., the method used in [5] or the fast-marching methods of [10, 25, 30]).
The evolution forφ then becomes

φt + P∇ψv · ∇φ = 0,

which means we are moving the level sets ofφ in R3 under the velocity fieldP∇ψv. The
projection matrix in front ofv keeps each level set ofψ independent from the others so
that the flow on one level set ofψ will not affect or be affected by the flow on the others.
Note that on the surface we are interested in,P∇ψv = v. So under this velocity field, for a
given level-set surface ofψ , the level sets ofφ on that surface will move according to the
velocity field projected onto that surface and, especially, the zero level set ofφ on the zero
level-set surface ofψ (i.e., the curves onM) will move according tov on M . This means
the evolution equation gives the flow onM under the velocity fieldv, which is what we
want.

A more detailed way to see this is to look at the surface{ψ = C2} and the curve on that
surfaceγ (s, t) obtained from the intersection of{φ = C1}, taken at timet , with the surface.
We study the flow ofγ on the surface according to a vector field tangent to the surface,
P∇ψv. Considering generalC1 andC2 allows us to obtain an evolution equation valid in all
of R3. From the definition ofγ , we haveφ(γ, t) = C1 for all s andt . Therefore, taking a
derivative with respect tot gives

∇φ(γ, t) · γt + φt (γ, t) = 0.

The curve moving under the vector fieldP∇ψv implies thatγt = P∇ψ(γ )v(γ ). Therefore,
the form of the equation becomes

φt (γ, t)+ P∇ψ(γ )v(γ ) · ∇φ(γ, t) = 0.

So, on the curve, we have

φt + P∇ψv · ∇φ = 0.
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SinceC1 andC2 are arbitrary, we then infer that this equation is valid in all ofR3, giving us
back the same equation as before.

Our process of projectingR2 evolution equations onto surfaces gives the same evolution
equation. For curves inR2 and using the original level-set method, the evolution equation is

φt + v · ∇φ = 0,

wherev is a velocity field given inR2. We want to look at the form of this partial differential
equation on the surfaceM (i.e., project the equation onto the surface). Givenx on M , note
∇ψ is normal toM at x and letẽ1, ẽ2, ẽ3 be an orthonormal basis inR3 with ẽ3 = ∇ψ

|∇ψ | at

x. This frame then allows us to define the surface gradient operator∇S at x as before, and
so the equation on the surface takes the form

φt + v · ∇Sφ = 0,

or, in detail,

φt + 〈v, ẽ1〉∂̃1φ + 〈v, ẽ2〉∂̃2φ = 0.

This can be rewritten in the usual format,

φt + v · P∇ψ∇φ = 0,

which is equivalent to what we obtained previously. So projecting theR2 equation onto the
surface also gives the correct evolution equation.

The derived evolution equation is a partial differential equation of Hamilton–Jacobi form
and can be numerically solved using total variation diminishing Runge–Kutta (TVD–RK) of
third order in time (see [26]) and the Hamilton–Jacobi weighted essentially nonoscillatory
method (WENO) of fifth order in space using the Godunov scheme [13]. The associated
Courant–Friedrichs–Lewy (CFL) condition says that1t , the time step, must be less than a
constant times1x, the spatial step, with the constant depending on the magnitude ofv. Also,
the singularity arising from|∇ψ | = 0 needs to be regularized. This can be accomplished,
for example, by replacing|∇ψ | with

√
|∇ψ |2+ ε2, whereε is positive and very small,

when it appears in a denominator.
The above process can then be used to derive evolution equations for more general flows.

First, a valid velocity fieldv, which now may depend onφ and its derivatives, must be
derived. This will depend on the type of flow being considered. Then the evolution equation
will take the same form as above,

φt + P∇ψv · ∇φ = 0.

This equation moves the level sets ofφ in R3 under the desired velocity field and thus moves
the zero level set ofφ on M according to the flow being considered. It is also valid in more
space dimensions, whereψ andφ are real-valued functions onRn and the projection matrix
is ann by n matrix. Note that we cannot use the above discretization any more for general
v. The valid discretization of the equation will depend on the form ofv; for example, if
−P∇ψv · ∇φ is elliptic, then we can use central differencing. We constantly use this velocity
field process to derive and validate the evolution equations for our flows.
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7. CONSTANT NORMAL FLOW

A difficult but important flow involves moving a curve in the outward normal direction
at a constant speedC on the surface. This means that at timet , the curve we are looking for
is the set of points of distanceCt, measured on the surface, away fromγ0 in the outward
direction. Note that moving inward corresponds toC being negative. For curves inR2, this
flow has been used to model flame fronts (see [20]) and is an integral part of many other
applications (see [21]).

We first use our approach to projectingR2 equations onto the surface to quickly generate
the evolution equation. The corresponding evolution equation for curves inR2, using the
original level-set method, takes the form

φt + C|∇φ| = 0.

Once again, givenx on M , let ẽ1, ẽ2, ẽ3 be an orthonormal basis inR3, with ẽ3 = ∇ψ
|∇ψ | atx.

This allows us to define∇S atx and so the evolution equation on the surface takes the form

φt + C|∇Sφ| = 0,

or, in detail,

φt + C
√
(∂̃1φ)2+ (∂̃2φ)2.

This can then be rewritten as

φt + C|P∇ψ∇φ| = 0,

which is the correct equation. We do, however, verify that it indeed moves a curve in the
outward normal direction at speedC by rederiving it using the more intuitive velocity field
approach.

In the velocity field approach, we want to calculate a velocity fieldv under which the
level sets ofφ, and especially the zero level set, will move in the correct manner. For
fixed t , consider the surface{ψ = C1} and the curve generated by intersecting this surface
with {φ = C2}, whereC1 andC2 are constants. Note that the case we are interested in is
C1 = C2 = 0 but by considering arbitraryC1 andC2, we obtain a velocity field valid in all
of R3 which can be used to evolveφ in R3. Now, on this curve,v should be normal to the
curve, have lengthC, and be tangent to the surface. Such av gives the desired motion for
the curve on the surface. From this, we deduce

v = C
P∇ψ∇φ
|P∇ψ∇φ| .

Note that since we are inR3, we could use vector cross products instead, along with the
identity

P∇ψ∇φ
|P∇ψ∇φ| =

∇ψ × (∇φ ×∇ψ)
|∇ψ × (∇φ ×∇ψ)| ,
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to rewrite our expressions since

|∇ψ |2P∇ψ∇φ = |∇ψ |2∇φ − (∇ψ · ∇φ)∇ψ = ∇ψ × (∇φ ×∇ψ);

however, we stick with the more general form. Also, ifC = 1, note thatv becomes the
outward normal of the curve on the surface. We use this fact in many later computations.

Under such a velocity field, the evolution equation forφ takes the form

φt + v · ∇φ = 0,

sinceP∇ψv = v. Simplifying, we get

v · ∇φ = C
P∇ψ∇φ
|P∇ψ∇φ| · ∇φ,

= C
P∇ψ∇φ
|P∇ψ∇φ| · P∇ψ∇φ,

= C|P∇ψ∇φ|,

where the second equality uses Proposition 1a. So the evolution equation for moving curves
on surfaces by constant normal flow is

φt + C|P∇ψ∇φ| = 0,

or, using vector cross products,

φt + C
|∇ψ ×∇φ|
|∇ψ | = 0.

This is the same equation we obtained previously by projecting theR2 equation onto the
surface.

Note that if we have a partial differential equation of the above form, even withC
depending onφ and its derivatives, then we say the curve will move by speedC in the
normal direction. In fact, all evolution equations for flows can be written in this form. This
is because given a velocity fieldv tangent to the level-set surfaces ofψ , then at each pointx,
we can decomposev in terms of P∇ψ∇φ

|P∇ψ∇φ| and the vectors perpendicular to it. Thusv · P∇ψ∇φ
is equal toC|P∇ψ∇φ|, for someC, and so moving under the vector fieldv is the same as
moving in the normal direction by speedC.

The partial differential equation we derived withC constant is of Hamilton–Jacobi form
and so we discretize it using Hamilton–Jacobi WENO of fifth order along with local Lax–
Friedrichs (LLF) in space and TVD–RK of third order in time. To satisfy the CFL condition,
1t needs to be smaller than a constant times1x. The term|P∇ψ∇φ| is also regularized
to remove the singularity arising from|∇ψ | = 0, and|∇ψ | can be approximated using
high-order central differencing.

In Table I, we see that our discretization has a high order of accuracy before merging
occurs. This was checked for a circle moving on a sphere by unit normal flow (i.e., flow
in the normal direction at unit speed). The fifth-order accuracy in spite of the third-order
TVD–RK used is also occasionally seen in the original level-set methods. We note that
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TABLE I

Order-of-Accuracy Analysis for Unit Normal Flow

Grid size Error Order

32× 32× 32 0.000343431
64× 64× 64 8.60357× 10−6 5.3189

128× 128× 128 1.70799× 10−7 5.6546

Note.The example considered was a circle moving on a sphere. The results
show high-order accuracy, with errors measured before merging occurs.

when the whole algorithm, including the second-order accurate plotter, is tested, we get
second-order accuracy instead.

In Fig. 1, we show a curve moving over two mountains by unit normal flow. The curve
breaks into two pieces, with each piece moving up each mountain. In Fig. 2, we show a curve
moving on a volcano. The curve starts outside the volcano and goes up and into the core. In
Fig. 3, we show a curve on a two-holed torus. The curve moves across the two-holed torus,
breaking and merging multiple times. Thus we see that the motion of the curve by constant
normal flow on complicated surfaces, even when merging occurs, is easily handled by our
algorithm. Finally, we show in Fig. 4 flow in the normal direction at a nonconstant speed.
For each point on the curve, this speed is equal to a functionβ evaluated at the outward
normal vector of the curve. The function we chose isβ(x) = |x1| + |x2| + |x3|, which is
related to crystal shapes. Note the squarish aspect of the growing curve.

We can also study the behavior of the flow in higher dimensions. The evolution equation

φt + C|P∇ψ∇φ| = 0

is still valid withψ andφ real-valued functions over the spaceRn. When we drop a dimension

FIG. 1. The surface, two mountains, is shown on the left and the evolution of a curve is shown on the right.
The curve is moving inward by unit normal flow and breaks into two smaller curves, one on each mountain, during
the flow.
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FIG. 2. The surface, a volcano, is shown on the left and the evolution of a curve is shown on the right. The
curve is moving inward by unit normal flow and flows up the side of the volcano, then down into the core.

and flow points on curves, the evolution equation takes the form

φt + C
|ψyφx − ψxφy|
|∇ψ | = 0.

Note that the numerator of the second term is the absolute value of the Jacobian ofψ and
φ. Thus it is possible, for example, to perform constant normal flow of a two-dimensional

FIG. 3. The surface, a two-holed torus, is shown on the left and the evolution of a curve is shown on the right.
The curve is moving inward by unit normal flow, translating to the left on the two-holed torus while breaking and
merging multiple times.
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FIG. 4. The surface, a folded plane, is shown on the left and the evolution of a curve is shown on the right.
The curve is moving outward in the normal direction by a nonconstant speed. The chosen speed, related to crystal
growth, causes the curve to develop a squarish aspect as it expands.

surface constrained on a hypersurface inR4 or constant normal flow of points constrained
on a curve.

8. SIGNED DISTANCE FUNCTION

In an extension of constant normal flow, we wish to find the signed distance of each point
on a surfaceM away from a curveγ confined toM . The signed distance onM of a point
away from a curve is the minimal distance measured on the surface, with a negative sign if
the point lies inside the curve, from that point to the points of the curve. Obtaining signed
distance allows construction of geodesics and can be used for path planning on manifolds.
It can also reveal important information about a surface’s geometry. We solve the problem
by settingψ to haveM as its zero level set and trying to find a real-valued functiond in
R3 such that given a pointx ∈ M, d(x) gives the signed distance ofx away fromγ . The
functiond is thus uniquely defined onM , though not inR3, and we calld a signed distance
function ofγ on M . Note that since onM , d = 0 only atγ , we have as before, thatγ is the
intersection between the zero level sets ofψ andd. Also note that this problem is different
from the ones we have previously studied because we are looking for a function defined on
all of M rather than one defined nearγ only.

For γ , a curve inR2, finding the signed distance function using the original level-set
method [29] is accomplished by introducing a time element and creating a partial differential
equation whose steady state solution values give signed distance. Starting with a level-set
functionφ initially havingγ as its zero level set and being negative insideγ , the equation

φt + sgn(φ(x, 0))(|∇φ| − 1) = 0

will give signed distance as its steady state viscosity solution. The signum function keeps
φ = 0 on γ for all time and the rest of the equation tries to force|∇φ| = 1, making the
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steady state solution a signed distance function. We derive the correct evolution equation
on the surface in two ways, by looking at this equation written on the surface and by using
the philosophy behind this equation to recreate it on the surface. In projecting the equation
on the surfaceM , we fix x on M andẽ1, ẽ2, ẽ3 an orthonormal basis ofR3 with ẽ3 = ∇ψ

|∇ψ |
at x. Then∇S is defined atx and the equation takes the form

φt + sgn(φ(x, 0))(|∇Sφ| − 1) = 0,

or, in detail,

φt + sgn(φ(x, 0))(
√
(∂̃1φ)2+ (∂̃2φ)2− 1) = 0.

This can then be written as

φt + sgn(φ(x, 0))(|P∇ψ∇φ| − 1) = 0.

This is the correct equation but we rederive it in a more detailed and intuitive way by
following the basic philosophy behind theR2 equation.

To findd on M , we can imitate the method for curves inR2 (i.e., introduce a time element
and create a partial differential equation that hasd as its steady state solution onM). Letφ
initially be such that the intersection of its zero level set withM is γ , with φ negative inside
γ . If φ is a signed distance function on the surface, then it must satisfy|P∇ψ∇φ| = 1 (i.e.,
|∇Sφ| = 1) on M . So we wish to create an evolution equation such that onM , the steady
state solution satisfies this property while keeping the zero level set ofφ fixed at its original
position. One such candidate is

φt + sgn(φ(x, 0))(|P∇ψ∇φ| − 1) = 0,

which is the same as the equation we derived previously. The steady state viscosity solution
on M of this evolution equation will bed. Note that the evolution equation is solved in all
of space but steady state may sometimes only be achieved atM .

EXAMPLE. We consider the surface to be a circle of radiusR. Thus we can takeψ =√
x2+ y2− R. Suppose the initial curve on this surface is taken to be the intersection of

the zero level set ofψ with the zero level set ofφ0 = y. Thus

∇ψ = 1

r

(
x
y

)
and

P∇ψ =
(

sin2 θ −cosθ sinθ

−cosθ sinθ cos2 θ

)
,

whereθ denotes the angle in polar coordinates for the point (x, y) andr =
√

x2+ y2. So

P∇ψ∇φ =
(

sinθ

−cosθ

)
(φx sinθ − φy cosθ)

=
(

sinθ

−cosθ

)
φθ

r
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and

|P∇ψ∇φ| = |φθ |
r
.

Our evolution equation thus becomes

φt + sgny

( |φθ |
r
− 1

)
= 0.

In the first quadrant, the viscosity solution of this equation is

φ =
{
φ0
(
r, θ − t

r

)+ t r θ > t

r θ r θ ≤ t,

and similarly for the other quadrants. Note that the signed distance function has kinks at the
north and south poles, where the intersection of the zero level sets of the level-set functions
is degenerate.

The signed distance evolution equation is also valid in space dimensions other than 3
and, in fact, the equation for distance on curves inR2 takes the form

φt + sgn(φ(x, 0))

(√|∇ψ |2|∇φ|2− (∇ψ · ∇φ)2
|∇ψ | − 1

)
= 0.

In R3, with vector cross products, the equation can be written as

φt + sgn(φ(x, 0))

( |∇ψ ×∇φ|
|∇ψ | − 1

)
= 0.

The signed distance evolution equation is of Hamilton–Jacobi form and we solve it using
the Hamilton–Jacobi fifth-order WENO–LLF in space and third-order TVD–RK in time.
We also replace the signum function with a smooth version (see [24]) and regularize to
remove the singularity occurring at|∇ψ | = 0. To satisfy the CFL condition,1t needs to
be less than some constant multiple of1x. Also, for efficiency, a moving-band algorithm
can be used (see [21]).

In Table II, we see that the algorithm for finding signed distance functions is first-order
accurate even away from kinks. This is because the curve is moved slightly during iterations
of the method. Theoretically this should not happen, but because of the numerical signum

TABLE II

Order-of-Accuracy Analysis for the Signed Distance Function

Grid size Error Order

32× 32× 32 0.020416
64× 64× 64 0.0106933 0.9330

128× 128× 128 0.00526517 1.0222
256× 256× 256 0.00261509 1.0096

Note.The curve from which distance was measured was a circle and the
surface was a sphere. The results show first-order accuracy.
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TABLE III

Order-of-Accuracy Analysis for the Signed Distance Function

Measuring ‖P∇ψ∇φ| − 1|

Grid size Error Order

32× 32× 32 0.000527837
64× 64× 64 4.73339× 10−6 6.8011

128× 128× 128 4.75352× 10−8 6.6377

Note.The curve and surface were the same as in Table II. The results show
high-order accuracy.

function and because of the grid, we see a small shift. Table III shows that the method has
a high order of accuracy away from kinks when looking at the quantity‖P∇ψ∇d | − 1|. So
altogether, this means the numerically computed signed distance function is a high-order
signed distance function for a slightly perturbed curve.

In Fig. 5, we show a curve on a volcano along with the other contours of the distance
function. Note the contours are well spaced. In Fig. 6, we show a curve on a torus along
with the other contours of the distance function. Once again, the contours are well spaced.
Thus we see that the signed distance function may be used to create grids on surfaces.

8.1. Keeping Level-Set Functions Well Behaved during Flows

One important application for signed distance functions is the role it can play in keeping
the level sets of a level-set function well behaved on the surface during a flow. This helps
reduce numerical inaccuracies that may appear from an overly steep or flat level-set function.
For curves inR2, this is accomplished by making the level-set function into the signed

FIG. 5. The surface, a volcano, is shown on the left and the contours of the signed distance function are shown
on the right. The picture is similar to that of constant normal flow on a volcano. Note the contours are well spaced.
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FIG. 6. The surface, a torus, is shown on the left and the contours of the signed distance function are shown
on the right. Note the contours are well spaced on the torus.

distance function to its zero level set at each time step of the flow. We can do the same for
level-set functions on surfaces. Note that sinceψ can be chosen to be well behaved or made
so by replacing it with the signed distance function inR3 to its zero level-set surface, we
only study the effect that differentφ have and assumeψ is already well behaved.

Certain types of flows may result in a bunching of level sets, where the function restricted
on the surface is steep, or a spreading out of level sets, where the function is almost
flat (see, e.g., [7]). Numerically, this is undesirable and may introduce large errors in the
finite-difference approximations. Further errors may also be introduced when interpolating
to find the location of the curve, especially if the function on the surface is almost flat.
Finally, flatness may cause singularities if we need to divide by the magnitude of the surface
gradient, as is done in geodesic curvature flow. But if the level-set function is constrained
to be a signed distance function, then the surface gradient will have a magnitude of value
1 everywhere except at kinks. This makes the level-set function well behaved, especially
and most importantly near the curve. When we consider a particular flow (i.e., solve an
evolution equation forφ), the signed distance constraint is usually enforced by iterating
the corresponding partial differential equation a few times after every time step of the flow.
We only need to iterate a few times since usually only the information around the curve
affects its motion and so we only need to enforce signed distance in the neighborhood of
the curve. Note that the zero level set ofφ theoretically remains fixed when iterating to a
signed distance function and so this process should not affect the flow of the curve on the
surface.

Another way computations may break down is when the level sets ofφ become tangent
to the surface. Note that this has to do not with the level sets ofφ on the surface, where
the signed distance constraint makesφ well behaved, but with the behavior of the level
sets ofφ off the surface. For example,φ = x2− Cx1 is already a signed distance function
on the surfacex2 = 0 for all C > 0, but asC tends to zero, the level sets ofφ become
tangent to the surface. Thus the surface gradient becomes zero, and especially numerically
inaccurate, and also any small perturbation ofφ may greatly shift the location of the curve
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or even introduce spurious curve parts. To prevent this from happening, we want to make
the level-set surfaces ofφ perpendicular toM on M , especially near the curve. This can be
accomplished by iterating a few steps of the partial differential equation

φt + sgn(ψ)
∇ψ
|∇ψ | · ∇φ = 0

at each step of the flow after signed distance is enforced. Note that this equation forces
∇ψ
|∇ψ | · ∇φ = 0 at steady state, so the level sets ofφ will be perpendicular to the surface. It
also keeps the level sets ofφ fixed on the surface so that signed distance on the surface is
preserved. The fast-marching methods in [10, 25, 30] might also be used in place of the
above partial differential equation.

The partial differential equation is of Hamilton–Jacobi form and we solve it using a fifth-
order WENO–Godunov in space and a third-order TVD–RK in time. The CFL condition
says that1t needs to be less than a constant multiple of1x.

8.2. Geodesics

The signed distance function can also be used to compute geodesics on surfaces from
points to curves. This means that given a curveγ on M , we want to find the shortest path on
M from any point onM toγ . This can be accomplished by using a signed distance function
d of γ on M . In fact, the shortest path is simply the part of the integral curve of the vector
field−d P∇ψ∇d drawn from the chosen point toγ . This simply means that the shortest path
starts at the chosen point and follows the steepest descent direction ofd on M with speed
d. The speed is thus zero atγ and so we follow the integral curve until convergence. The
integral curves,y(s), of the vector field are curves inR3 and can be computed according to
the ordinary differential equation

ẏ(s) = −d(y(s))P∇ψ(y(s))∇d(y(s)).

For a chosen pointx on M , the geodesic fromx to γ is thus found by solving the above
ordinary differential equation with initial conditiony(0) = x. This can be done numerically
using a Runge–Kutta scheme.

When we want the geodesic between two pointsa andb, we can first get ãd which gives
the signed distance function to a small curve surrounding the point a (i.e., approximating
a). Thend = d̃ + d̃(a) is an approximate signed distance function toa on the surface,
which is exact when the small curve approximatinga is at a uniform distance away from
a. Using thisd in the ordinary differential equation above along with the initial condition
x(0) = b allows us to calculate an approximate geodesic. Or we can require that signed
distance be given initially in the neighborhood of the pointa and then solve for a signed
distance functiond to a on M by iterating the corresponding evolution equation, but only
outside the neighborhood of initial given values, the given values being fixed. We can then
use thisd along withx(0) = b for our initial condition to calculate geodesics.

A drawback of this signed distance function method for geodesics is that when there are
two or more geodesics, we have almost no control over which one or whether any will be
chosen. Also note that numerical approximations of the geodesics are not forced to lie on
the surface in the same manner as with our basic representation. Only the order of accuracy
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FIG. 7. The volcano surface is shown on the left and geodesics from various points to a curve in the volcano
core are shown on the right. The geodesics travel up the volcano and down into its core.

of the ODE solver keeps computed geodesics close to the surface. However, a projection
of the computed point at every RK step can also be implemented to fix this.

In Fig. 7, we show a curve in the core of a volcano and the geodesics from certain points
to that curve. The geodesics travel up the volcano and down into the core to reach the curve.
In Fig. 8, we show a curve wrapped around a torus and the geodesics from certain points
to that curve. The geodesics travel across the torus and around the hole to reach the curve.
Thus we see how the signed distance function can be used to find geodesics from points to
curves on surfaces.

FIG. 8. A torus is shown on the left and geodesics from various points to a curve on the torus are shown on
the right. The geodesics travel across the torus, around the hole in the middle, to reach the curve.
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9. GEODESIC CURVATURE FLOW

One of the most important geometric motions of curves on surfaces is geodesic curvature
flow Figs. 9–12. This motion is important as curve shortening and can be used to get
geodesic curves of surfaces and even to generate minimal surfaces on hypersurfaces of
R4. Constructing the correct evolution equation can be accomplished in a few ways, all of
which lead to the same equation. The first way is by projecting the corresponding evolution
equation for curves inR2 onto the surface. The second way involves finding the curvature
times normal vectors of the curve inR3 and projecting them onto the surface. This gives the
velocity vectors with which to move the curve. The third way is studying modified gradient
descent minimizing the length of the curve constrained on the surface. The fact that these are
all equivalent means that moving a curve by curvature is a minimization of the length of the
curve.

First method: ProjectingR2 equation onto a surface.We note that the corresponding
evolution equation inR2 takes the form

φt = ∇ ·
( ∇φ
|∇φ|

)
|∇φ|,

where∇ · ( ∇φ|∇φ| ) is the mean curvature of the curve. Givenx on M and an orthonormal
basisẽ1, ẽ2, ẽ3 in R3 with ẽ3 = ∇ψ

|∇ψ | at x, we can define∇S at x. So the partial differential
equation put ontoM at x takes the form

φt = ∇S ·
( ∇Sφ

|∇Sφ|
)
|∇Sφ|,

FIG. 9. A simple surface is shown on the left and the evolution of a curve under geodesic curvature flow is
shown on the right. The curve shrinks on the surface, minimizing its length, until it disappears.
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where, in fact,∇S · ( ∇Sφ

|∇Sφ| ) is the geodesic curvature of the curve. In detail, the equation
is

φt =
(
∂̃1

(
∂̃1φ√

(∂̃1φ)2+ (∂̃2φ)2

)
+ ∂̃2

(
∂̃2φ√

(∂̃1φ)2+ (∂̃2φ)2

))√
(∂̃1φ)2+ (∂̃2φ)2,

with

∂̃1

(
∂̃1φ√

(∂̃1φ)2+ (∂̃2φ)2

)
+ ∂̃2

(
∂̃2φ√

(∂̃1φ)2+ (∂̃2φ)2

)

the geodesic curvature. We then rewrite all this, using Proposition 1c, as

φt = ∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

) |P∇ψ∇φ|
|∇ψ | ,

with

∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
1

|∇ψ |

the geodesic curvature. This equation translates to moving a curve onM in the inward
normal direction by geodesic curvature, which is what we want.

Second method: Projection of free-space curvature times normal vector.Consider the
surface{ψ = C1} and the curve generated by intersecting this surface with{φ = C2},
with C1 and C2 constants. This means that∇ψ ×∇φ taken on the curve is parallel to
the tangent vector of the curve. So the tangent vector of the curve can be written as
T = ∇ψ×∇φ

|∇ψ×∇φ| . Now the curvature times the normal vector of the curve inR3, κN, is the
change in the tangent vector along the curve. Therefore, using directional derivatives, we
get

κN = (∇T1 · T,∇T2 · T,∇T3 · T),

whereT = (T1, T2, T3) (see [3]). We now project this onto the surface to getP∇ψκN. Using
this as our velocity field leads to the evolution equation

φt = −P∇ψκN · ∇φ.

This equation also gives geodesic curvature motion of curves on surfaces.

Third method: Energy minimization.We consider the energy

E(φ) =
∫

R3
δ(φ)δ(ψ)|P∇ψ∇φ||∇ψ | dx,

which gives the length of the curve represented by the intersection between the zero level
sets ofφ andψ .
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PROPOSITION3. The Euler–Lagrange equation of this energy is

0= −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
δ(ψ)δ(φ).

Replacingδ(ψ)δ(φ), which we treat as smoothed-out delta functions, with|P∇ψ∇φ||∇ψ | in our
gradient descent gives us the evolution equation

φt = ∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

) |P∇ψ∇φ|
|∇ψ | ,

which is exactly what we got using the first method. Note that because everything is inR3,
we can also write this equation as

φt = ∇ ·
(
(∇ψ ×∇φ)×∇ψ
|∇ψ ×∇φ|

) |∇ψ ×∇φ|
|∇ψ |2 .

We made the above replacement because it matches the equation derived using the first
method. Also, according to standard level-set practice [31], we see thatδ(ψ)δ(φ) should be
replaced by a quantity that yields a gradient descent algorithm for minimizing the enclosed
surface area ofγ with inward normal flow at unit speed. The enclosed surface area for
our curve onM is given by

∫
R3 H(−φ)δ(ψ)|∇ψ | dx, whereψ is static andH is the one-

dimensional Heaviside function. So the Euler–Lagrange equation is

0= −δ(φ)δ(ψ)|∇ψ |,

and gradient descent with the above replacement gives

φt − |∇ψ ×∇φ||∇ψ | = 0,

which is inward normal flow at unit speed.

Equivalence. We now show that the evolution equations for the first and third methods
are equivalent to the evolution equation for the second method. The main result is the
following identity:

PROPOSITION4.

∇ · (T ×∇ψ) = κN · (∇ψ × T),

where

T = ∇ψ ×∇φ|∇ψ ×∇φ| .

Using this to expand the right-hand side of the evolution equation in the second method,
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TABLE IV

Order-of-Accuracy Analysis for Geodesic Curvature Flow

of a Circle on a Sphere

Grid size Error Order

32× 32× 32 0.00203138
64× 64× 64 0.000540219 1.9108

128× 128× 128 0.00014037 1.9443

Note.The result shows second-order accuracy.

we get

−P∇ψκN · ∇φ = −P∇ψ∇φ · κN

= −κN ·
( |∇ψ |2∇φ − (∇φ · ∇ψ)∇ψ

|∇ψ |2
)

= −κN ·
(
(∇ψ ×∇φ)×∇ψ

|∇ψ |2
)

= −κN ·
(
(∇ψ ×∇φ)×∇ψ
|∇ψ ×∇φ|

) |∇ψ ×∇φ|
|∇ψ |2

= −κN · (∇ψ × T)
|∇ψ ×∇φ|
|∇ψ |2

= −∇ · (T ×∇ψ) |∇ψ ×∇φ||∇ψ |2

= ∇ ·
(
(∇ψ ×∇φ)×∇ψ
|∇ψ ×∇φ|

) |∇ψ ×∇φ|
|∇ψ |2 ,

which is the right-hand side of the evolution equation in the third method. This means that
all the evolution equations are equivalent. We summarize this result in the following:

PROPOSITION5.

P∇ψκN · ∇φ = −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

) |P∇ψ∇φ|
|∇ψ | .

The resulting evolution equation is valid in any dimension and thus it is possible to study,
for example, minimal surfaces on hypersurfaces inR4.

We also have the property

PROPOSITION6. The evolution equation is degenerate second-order parabolic.

Thus we use second-order central differencing in space with third-order TVD–RK in
time to numerically solve the evolution equation. We also regularize the equation to remove
the singularities arising at|∇ψ | = 0 and|P∇ψ∇φ| = 0. To satisfy the CFL condition, 1t
needs to be less than a constant multiple of1x2.

In Table IV, we see that the method is second-order accurate. This result was obtained
by studying a circle moving by geodesic curvature flow on a sphere.

In Fig. 10, we show a curve moving on two mountains. The curve needs to move over
the mountains before it can shrink to a point and disappear. In Fig. 11, we show a curve
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FIG. 10. The surface, two mountains, is shown on the left and the evolution of a curve under geodesic curvature
flow is shown on the right. The curve is shrinking but needs to move over the mountains before it can disappear.

moving on a bent plane. Note that the surface has a kink in it. The curve navigates over this
without any problems. In Fig. 12, we show a curve on a cylinder. The curve evolves and
wraps tightly around the cylinder, forming a circle. This is a geodesic curve for the surface.

10. WULFF FLOW

We now consider the problem of evolving a curve by Wulff flow on a surface. This
means minimizing the Wulff energy

∫
γ
β(ν) ds, whereβ : S2→ (0,∞) andν is the unit

FIG. 11. The surface, a bent plane, is shown on the left and the evolution of a curve under geodesic curvature
flow is shown on the right. Note the surface has a kink in it and the curve shrinks over this kink without any
problems.
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FIG. 12. The surface, a cylinder, is shown on the left and the evolution of a curve under geodesic curvature
flow is shown on the right. The curve ends up wrapping tightly around the cylinder, forming a geodesic curve, in
this case a circle, on the surface.

normal ofγ lying on the surfaceM . We only study the case of convex Wulff energies
(see Proposition 8, below). Also, note that whenβ ≡ 1, the Wulff energy is the length of
the curve. Thus Wulff flow is a certain generalization of geodesic curvature flow which
is related, for curves inR2 and surfaces inR3, to crystal shapes (see [28]). We make a
homogeneous degree-one extension ofβ to R3 and then rewrite the Wulff energy using our
usual representation to get

E(φ) =
∫

R3
β

(
P∇ψ∇φ
|P∇ψ∇φ|

)
δ(ψ)δ(φ)|∇ψ ×∇φ| dx.

PROPOSITION7. The Euler–Lagrange equation of this energy is

0= −∇ · (P∇ψ∇β(P∇ψ∇φ)|∇ψ |)δ(ψ)δ(φ).

So the evolution equation, enacting the usual replacement to the delta functions, can be
written as

φt = ∇ · (P∇ψ∇β(P∇ψ∇ψ)∇φ|∇ψ |) |P∇ψ∇φ||∇ψ | .

This moves a curve by Wulff flow on a surface. The evolution equation also satisfies

PROPOSITION8. The evolution equation is degenerate second-order parabolic if

∇2β

(
P∇ψ∇φ
|P∇ψ∇φ|

)
is nonnegative definite.
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To see that the equation we derived is the same as when projecting theR2 evolution
equation on the surface, we note that for curves inR2, Wulff flow is given by

φt = ∇ · ∇β(∇φ)|∇φ|.

So givenx on M andẽ1, ẽ2, ẽ3 an orthonormal basis forR3 with ẽ3 = ∇ψ
|∇ψ | at x, we can

define∇S at x and, thus, the equation on the surface takes the form

φt = ∇S · ∇Sβ(∇Sφ)|∇Sφ|,

or, in detail,

φt = (∂̃1(∂̃1β(∂̃1φẽ1+ ∂̃2φẽ2))+ ∂̃2(∂̃2β(∂̃1φẽ1+ ∂̃2φẽ2)))

√
(∂̃1φ)2+ (∂̃2φ)2.

This can then be written as

φt = P∇ψ∇ · (P∇ψ∇β(P∇ψ∇φ))|P∇ψ∇φ|,

which is equivalent to the equation derived using energy minimization. Note that higher
dimensions can also be considered by using the same equation.

We numerically solve the evolution equation using second-order central differencing on
all spatial derivatives. The time derivative is discretized using a TVD–RK of third order. The
equation is also regularized at the singularities that occur at|∇ψ | = 0 and|P∇ψ∇φ| = 0.

In Fig. 13, we show a curve moving on the bottom of a paraboloid. The Wulff energy we
used was with a smoothed-out version ofβ(x) = |x1| + |x2| + |x3|. Its exact form is

β(x) =
√

x2
1 + ε2+

√
x2

2 + ε2+
√

x2
3 + ε2,

with ε = 0.1. Thus the curve develops a squarish shape while shrinking. In Fig. 14, we
show a curve moving on a bent plane. The curve once again develops a squarish shape and
we see that computing over kinks in the surface, which cause kinks in the curve, is not a
problem for our algorithm.

FIG. 13. The surface, the bottom of a paraboloid, is shown on the left and the evolution of a curve under Wulff
flow, with β(x) a smoothed-out form of|x1| + |x2| + |x3|, is shown on the right. The curve shrinks, developing a
squarish shape on the surface before disappearing.
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FIG. 14. The surface, a bent plane, is shown on the left and the evolution of a curve under Wulff flow, with
β(x) a smoothed-out form of|x1| + |x2| + |x3|, is shown on the right. The curve shrinks, developing a squarish
shape on the surface before disappearing. Note that the kink in the surface does not present any problems.

10.1. Wulff Minimal Curves

The evolution equation for Wulff flow can be slightly altered to give a method for finding
Wulf minimal curves on surfaces. Given a set of points onM , we want to find the curve on
the surface that passes through these points with the minimum Wulff energy. We call the
given points boundary points. Thus Wulff minimal curves are the one-dimensional version
of Wulff minimal surfaces (see [6]). This problem may be useful in the study of properties
of crystals on surfaces.

For β ≡ 1, we are searching for the curve on the surface of minimal length that passes
through the boundary points. For general surfaces inR3, the curve will be piecewise
geodesics. We find the solution to this problem by solving to steady state the zero level
set ofφ on M in the evolution equation

φt = −µP∇ψκN · ∇φ,

whereµ is smooth withµ(x) = 0 if x is a boundary point andµ(x) = 1 outside a small
neighborhood of the boundary points. The initial curve,γ0, is chosen to pass through the
boundary points. This approach is an extension of the one used in [6].

In the case where the boundary points consist of just two points,a andb, andγ0 is chosen
carefully, we get the geodesic betweena andb. However, if the initial curveγ0 is not chosen
to be topologically equivalent to the answer, parts of it may merge at a later time and not
evolve into what we want.

For generalβ, the evolution equation we are interested in is

φt = µ∇ · (P∇ψ∇β(P∇ψ∇φ)|∇ψ |) |P∇ψ∇φ||∇ψ | .

Numerically, the evolution equation is solved using the same finite-difference schemes as in
the Wulff flow case. Theµ is just treated as a coefficient in front of the rest of the equation.
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For higher dimensions, the same evolution equation holds since it is already in its general
form. Thus it is possible to study Wulff minimal surfaces constrained on hypersurfaces
in R4.

Creating aγ0, or the corresponding initial level-set function, that passes through the
boundary points may not be easy, but sometimes we can simply take asγ0 any curve on the
surface that encompasses all the boundary points. Thus the initialφ is easy to construct.
When we run the evolution equation in time, the curve will shrink and sometimes end up
going through all the boundary points. Other, more robust interpolating methods can also
be used (see [32]).

11. FIXED ENCLOSED SURFACE AREA

We now consider the problem of evolving under a certain motion a curveγ on a surface
M with the constraint that the surface area of the part of the surface enclosed byγ is fixed in
time. For curves inR2, this can be used to study bubbles or other fluids that conserve enclosed
area or volume (see [14, 33]). We mainly look at geodesic curvature flow and occasionally
comment on more general motions. In this case, the energy involving the length of the curve
coupled with the constraint gives us the energy we are interested in. The constraint can be
translated as the condition that

∫
R3 H(−φ)δ(ψ)|∇ψ | dx remains constant throughout time.

Note that this means ifγ is a collection of curves, then the total enclosed area is fixed, not
the area enclosed by each curve in the collection. So the new energy to consider is

E(φ) =
∫

R3
δ(ψ)δ(φ)|P∇ψ∇φ||∇ψ | dx− λ

∫
R3

H(−φ)δ(ψ)|∇ψ | dx,

whereλ is a Lagrange multiplier.
For other flows, we can replace the first integral with the energy corresponding to the

type of flow. This just means that we are coupling a different energy with the constraint.
For example, if we want Wulff flow then we use the Wulff energy. Details of this are given
when we discuss Wulff shapes on surfaces.

The Euler–Lagrange equation then becomes

0= −∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
δ(ψ)δ(φ)+ λ|∇ψ |δ(ψ)δ(φ).

Under our usual replacement forδ(ψ)δ(φ) and previous results, we get the evolution
equation

φt + λ|P∇ψ∇φ| = ∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

) |P∇ψ∇φ|
|∇ψ | .

We can find the value ofλ by enforcing the constraint

0 = d

dt

∫
R3

H(−φ)δ(ψ)|∇ψ | dx

=
∫

R3
φtδ(φ)δ(ψ)|∇ψ | dx

=
∫

R3

(
∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
− λ|P∇ψ∇φ|

)
δ(φ)δ(ψ)|∇ψ | dx.
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Solving forλ in this equation gives

λ = −
∫

R3 ∇ ·
(

P∇ψ∇φ
|P∇ψ∇φ| |∇ψ |

)
δ(φ)δ(ψ)|∇ψ | dx∫

R3 |P∇ψ∇φ|δ(φ)δ(ψ)|∇ψ | dx
.

All this together defines the evolution equation forφ that moves a curve by geodesic
curvature flow while keeping the enclosed surface area fixed. This equation is also valid
and can be used in higher dimensions. For more on the process of fixing enclosed area or
volume, see [14, 33].

Numerically, the right-hand side of the evolution equation is handled in a manner cor-
responding to the flow. The left-hand side is in Hamilton–Jacobi form and we solve it
as in the constant normal flow section (i.e., using a third-order TVD–RK in time and a
Hamilton–Jacobi fifth-order WENO–LLF in space). At each Runge–Kutta step, we solve
for λ by using a second-order approximation for the integrals, whose integrands are only
nonzero near the front because of the delta functions, and usingφ from the previous
step.

When deriving the evolution equation from the correspondingR2 equation with general
β,

φt + λ|∇φ| = ∇ · ∇β(∇φ)|∇φ|,

with

λ = −
∫

R2 ∇ · ∇β(∇φ)|∇φ|δ(φ) dx∫
R2 |∇φ|δ(φ) dx

,

we note that all the terms have been considered previously except theλ term. Forλ, we
would like to take the integrals over the surface instead of overR2. This means that we
change the integral from

∫
R2 dx to

∫
R3 δ(ψ)|∇ψ | dx. Using this, the rest of the terms carry

over as before and so projecting theR2 equation onto the surface gives the same evolution
equation derived above.

We can also consider flows that are not minimizations of energies. If we want the curve
to move according to the equation

φt = −v · ∇φ,

wherev can depend onψ ,φ, and their derivatives, then the constrained motion can be given
by

φt + λ|P∇ψ∇φ| = −v · ∇φ,

where

λ = −
∫

R3(v · ∇φ)δ(φ)δ(ψ)|∇ψ | dx∫
R3 |P∇ψ∇φ|δ(φ)δ(ψ)|∇ψ | dx

.

This will move a curve according tov while keeping the enclosed surface area fixed. Note
that this makes no mention of the evolution equation coming from minimizing an energy.
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FIG. 15. The surface, a paraboloid, is shown on the left and the evolution of a curve under geodesic curvature
flow with a fixed enclosed surface area is shown on the right. The initial curve evolves to a steady state curve, a
circle symmetrically wrapped around the paraboloid.

However, when there is an energy for the flow, such as in geodesic curvature flow or
Wulff flow, the evolution equation makes more sense. Also, note thatλ is now not exactly
a Lagrange multiplier. Higher dimensional motions preserving an enclosed area can be
considered using the same evolution equations.

In Fig. 15, we show a curve moving by geodesic curvature flow with a fixed enclosed
surface area constraint on a paraboloid. The steady state curve is a circle symmetrically
wrapped around the paraboloid. In Fig. 16, we show a curve moving by the same flow on
a sphere. The initial curve is elliptical in nature. The steady state curve is a circle on the
sphere.

FIG. 16. The surface, a sphere, is shown on the left and the evolution of a curve under geodesic curvature
flow with a fixed enclosed surface area is shown on the right. The initial curve evolves to a Wulff shape, a circle
on the sphere.
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11.1. Wulff Shapes

We can get further interesting shapes on surfaces by running the evolution equation for
Wulff flow with a fixed enclosed surface area and looking at the steady state of the zero
level set ofφ on M . For M a plane (i.e., for curves inR2), this is a Wulff shape, which is
the shape certain crystals form (see [28, 22]). These shapes are also of interest as surfaces
in R3. Following the steps for deriving the evolution equation for the enclosed surface area
preserving motion on surfaces, we start with the energy

E(φ) =
∫

R3
β

(
P∇ψ∇φ
|P∇ψ∇φ|

)
|P∇ψ∇φ||∇ψ |δ(ψ)δ(φ)dx− λ

∫
R3

H(−φ)δ(ψ)|∇ψ | dx,

whereλ is a Lagrange multiplier, and get the evolution equation

φt + λ|P∇ψ∇φ| = ∇ · (P∇ψ∇β(P∇ψ∇φ)|∇φ|) |P∇ψ∇φ||∇ψ | ,

where

λ =
∫

R3 ∇ · (P∇ψ∇β(P∇ψ∇φ)|∇φ|)δ(φ)δ(ψ)|∇ψ | dx∫
R3 |P∇ψ∇φ|δ(φ)δ(ψ)|∇ψ | dx

.

The steady state curve onM of this evolution equation gives a Wulff shape on the surface.
Wulff shapes in higher dimensions can be found by using the same equations.

In Fig. 17, we show a curve moving under Wulff flow while fixing the enclosed surface
area. The steady state shape is a Wulff shape on the surface and is squarish in nature since the
β(x) used was a smoothed-out version of|x1| + |x2| + |x3|. More complicated curves and
surfaces with topological changes in the curves can also be considered using our algorithm.

FIG. 17. The surface, a bent plane, is shown on the left and the evolution of a curve under Wulff flow with a
fixed enclosed surface area is shown on the right. The initial curve evolves to a steady state curve, a smoothed-out,
squarish shape on the surface.
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12. MOVING CURVES ON MOVING SURFACES

We now extend our results to include moving curves on moving surfaces. Since the surface
is moving,ψ now depends on time, with the zero level set ofψ at any time giving the surface
at that time. Also, the curve on the surface at any time is given by the intersection of the
zero level sets ofψ andφ at that time. To follow the surface and curve, we need only follow
ψ andφ or, more accurately, the zero level set ofψ and the intersection of this with the zero
level set ofφ. The initial surface and curve are given and represented by an initialψ andφ.

Suppose the motion we want for the curve satisfies on fixed surfaces (i.e.,ψ fixed in time)

φt + v · ∇φ = 0

for some velocity fieldv tangent to the level-set surfaces ofψ that can depend onψ , φ, and
their derivatives. Suppose the motion of the surface itself satisfies

ψt + w · ∇ψ = 0

for some velocity fieldw that can depend onψ and its derivatives but not onφ in any way.
The fact thatw does not need to be parallel to the normal vector of the surface means the
surface is allowed to twist within itself without changing its shape. Thus we can get the
velocity field under which to move the curve by adding the two velocity fieldsv andw.
This means the evolution equation is

φt + (v + w) · ∇φ = 0.

Note that the curve and also the surface may undergo merging during the evolution process.
As an example, suppose we want the curve to move outward in its normal direction at

unit speed. Then we getv · ∇φ = |P∇ψ∇φ|. Suppose we also want the surface to move
outward in its normal direction at unit speed. The equation for this is

ψt + |∇ψ | = 0,

withw = ∇ψ
|∇ψ | . Therefore,w · ∇φ = ∇ψ ·∇φ|∇ψ | . So the sum of the two velocity fields gives the

evolution equation for the desired motion of the curve,

φt + |P∇ψ∇φ| + ∇ψ · ∇φ|∇ψ | = 0.

Another example is where the curve itself does not move but the surface moves under
the velocity fieldw. Thus the motion of the curve inR3 is due only to the motion of the
surface. This specific problem, called region tracking, was first solved in [2] using the same
representation we use here. In this case,

ψt + w · ∇ψ = 0

is the equation for the motion of the surface, and thus,

φt + w · ∇φ = 0

is the equation for the motion of the curve.
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TABLE V

Order-of-Accuracy Analysis for a Circle on a Sphere, Both

Moving at Unit Speed in the Normal Direction

Grid size Error Order

20× 20× 20 0.000464692
40× 40× 40 3.81069× 10−6 6.9301
80× 80× 80 5.37093× 10−7 2.8268

160× 160× 160 6.68242× 10−8 3.0067

Note.The results show third-order accuracy.

All this can also be done for other previously described motions except for the case of a
fixed enclosed surface area. In this case, we need to clarify what we really want since the
surface may shrink until its total surface area is smaller than the enclosed surface area to be
fixed. Higher dimensions are also covered by the above evolution equations.

A drawback to this method is that spurious curves may appear when surfaces merge. This
happens when a part of the surface with negative values ofφ touches a part of the surface with
positive values. At the place of contact, a zero level set ofφ is created between the positive
and negative values and so gives rise to a spurious curve on the surface. If the problem we
are considering is curves on surfaces, then this is a wrong answer which cannot be easily
fixed. But if we look at a different problem, then the spurious curve actually makes sense.
Let us think of the curve as the boundary of the set of negative values ofφ on the surface
and the movement of the curve as being due to the expansion or contraction of that set. The
negative values may denote one substance and the positive values a different substance, as
in a two-phase flow. When negative and positive values touch, a new boundary for the set
of negative values needs to be created and, hence, we should get a curve appearing there to
separate the positive and negative values. This way of thinking not only is convenient here,
but also may be useful in physical applications.

Table V shows that our method has a high order of accuracy for the case of a circle on
a sphere, both moving at unit speed in the normal direction. In Fig. 18, we show initially a
circle on a plane. The circle is moving by constant normal flow on the plane and the plane
is moving by constant normal flow inR3. The final picture shows at the final time a dilated
circle on a translated plane. More complicated curves and surfaces can also be handled by
our algorithm.

13. LOCAL LEVEL-SET METHOD

A curve is a one-dimensional object, so to solve an evolution equation in all ofR3 is
overly expensive. In most cases, we only need to solve the equation in a neighborhood of
the curve. Exceptions, however, include getting signed distance functions to curves, where
theφ is needed over the whole surface, or cases where curves can appear out of nowhere,
for example, in the active contour method of Chan and Vese [4]. But in most of the motions
we have studied here, the evolution equation is only needed in a neighborhood of the curve.

We have succeeded in localizing near the surface (i.e., retaining only the grid points that
are near the surface). This is optimal for problems that needφ defined on the whole surface
(e.g., getting signed distance). We create a data structure to hold only the grid points close to
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FIG. 18. This is a moving curve on a moving-surface computation. The original surface and curve are shown
in the two plots on the top. The final surface and curve are shown in the two plots below. The surface and curve
are both moving by constant normal flow. The surface translates to the left while the curve shrinks.

the surface. The structure only needs to be created once, at the beginning, since the surface
is static. This immediately cuts down on our memory storage. Also, we solve our partial
differential equations only at the retained grid points in this structure, thus greatly speeding
up the method. To determine which grid points are near the surface and thus should be in
the structure, we look at the distances inR3 of those points away from the surface. Only
points under a certain value, a constant times1x, are retained, which makes this method
optimal whenφ is needed over the whole surface. We use the fast marching method once
at the beginning to create the distance values at the grid points.

In actuality, we only solve our partial differential equation in a neighborhood of the
surface smaller than the neighborhood of retained points. This is done so that the stencils
of the finite-difference schemes we use will not exit the neighborhood of retained points.
Fortunately, the fast marching method we used to obtain distance to the surface, as a by-
product, also gives an ordering of the points with respect to their distance values, from least
to greatest. We can then use this to enforce Neumann boundary conditions on the boundary



638 CHENG ET AL.

of the smaller neighborhood by extending the values there, following the normal vectors of
the boundary, to the larger neighborhood. Note that the normal vectors of the boundary are
in the same direction as the gradients of the distance values and thus following the ordering
given by the fast marching method correctly propagates the values. So even though the
partial differential equation is only solved in the smaller neighborhood, the finite-difference
schemes will use values in the whole neighborhood. The method, under these operations,
still retains the same accuracy.

We may also want to make sure that the numerical boundary conditions will not adversely
affect the behavior ofφ on the surface. For this, we can make the level-set surfaces ofφ

perpendicular to the surface while fixing the values ofφ on the surface. This is accomplished
using the evolution equation described in Section 8 for this purpose. The fast marching
method can also be used instead. The process of making the level sets ofφ perpendicular
to the surface, however, may reduce the accuracy of the method.

So far, we have constructed a local level-set method that is optimal for solving partial
differential equations over the whole surface but not for solving just in the neighborhood
of a curve. For this, we currently have a method that has the potential to be optimal in
both speed and memory but that has not yet been programmed in such a way. It similarly
involves retaining only the grid points that are near the zero level sets ofψ andφ, solving in
a smaller neighborhood of these retained points, and making the level sets ofψ andφ well
behaved as described in Section 8. This ensures that the boundaries of the neighborhood do
not affect the motion of the curve. However, the data structure is no longer static since the
curve is moving, taking the neighborhood along with it. This aspect slightly complicates
the problem and especially the programming issues.

Table VI shows the accuracy of the local level-set method applied to constant normal flow.
The evolution equations are solved only in a neighborhood of the surface. Also, the level sets
of φ are not enforced to be perpendicular to the surface. The test includes all elements of our
method, including the plotter. It was generated by looking at a circle moving on a sphere
before merging occurs and the results show roughly second-order accuracy. This agrees
with the global method when the plotter is included in the error computations. Running the
algorithm to make the level sets ofφ perpendicular to the surface will slightly move the

TABLE VI

Order-of-Accuracy Analysis for the Local Level-Set Method

for Constant Normal Flow

Grid size Error Order

8× 8× 8 0.053125
16× 16× 16 0.016274 1.7068
32× 32× 32 0.00561706 1.5347
64× 64× 64 0.00173415 1.6956

128× 128× 128 0.000433395 2.0005
256× 256× 256 0.000169642 1.3532
320× 320× 320 0.000107546 2.0425

Note.The grid size represents the equivalent-sized grid if all grid points
were used. The example considered was a circle moving on a sphere. Because
of the behavior of the error for the 256× 256× 256 case, we only say the
method is roughly second-order accurate. Note that we can run the program
on a grid equivalent to 320× 320× 320 with this algorithm.
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TABLE VII

Order-of-Accuracy Analysis for the Local Level-Set Method

for Distance Functions

Grid size Error Order

10× 10× 10 0.04269
20× 20× 20 0.0300296 0.5075
40× 40× 40 0.0170282 0.8185
80× 80× 80 0.00864061 0.9787

160× 160× 160 0.00435087 0.9898
320× 320× 320 0.00213815 1.0249

Note.The grid size represents the equivalent-sized grid if all grid points
were used. The curve considered was a circle on a sphere (as in Table II).
The method is first-order accurate. Note that we can run the program on a
grid equivalent to 320× 320× 320 with this algorithm.

contours on the surface and reduce the accuracy to first order. We remark again that grids
can be used that are much finer than those used for the global method that solves in all of
R3. Table VII shows the accuracy of the local level-set method applied to finding signed
distance functions. Once again, the level sets ofφ are not enforced to be perpendicular to
the surface. The result is first-order accuracy, as in the global case. The table was generated
by looking at a circle on a sphere, away from kinks. Note that much finer grids can be used
than the ones used for the global method. All in all, the local level-set method is faster and
needs less memory than the global method while still being able to preserve the accuracy
of the method.

14. HIGHER DIMENSIONS AND CODIMENSIONS

We can further extend our method to higher dimensions and codimensions (see [3]) by
using more functionsφ1, . . . , φk andψ1, . . . , ψm in Rn, for k+m≤ n. The intersection
of the zero level sets ofψ1, . . . , ψm gives the constraint, and the intersection of this with
the intersection of the zero level sets ofφ1, . . . , φk gives the object to be moved under the
constraint. This means that the constraint surface has dimensionn−mand on this, we move
an object with dimensionn−m− k. The actual motions are carried out under a system
of evolution equations forφ1, . . . , φk. Note, however, that the fact that our methods are
grid based, usually using uniform grids, means the size of computer memory needed to run
simulations in very high dimensions may be restrictive, even with a local level-set method.

15. CONCLUSION

We have devised a level-set-based method for moving curves constrained on surfaces.
This method can accurately handle a wide variety of curves and surfaces and motions. It
can also extend all the results of the originalR2 level-set method and thus conceivably has
a wide range of applications. Basic applications already allow us to create signed distance
functions, geodesics, and various interesting crystal shapes on surfaces. The limitations of
our method are just the limitations of any level-set based approach. Finally, the method is
easy to implement because complex surface topologies and procedures such as merging or
breaking or keeping the curve on the surface are all handled automatically.
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16. PROOFS OF PROPOSITIONS

These “proofs” are really only formal derivations. For example, we have not defined the
precise spaces of functions we are using. Nevertheless, we present them as a formal guide
to why the method seems to work well.

Proof of Proposition 1. We prove that these identities hold inRn for arbitraryn.

(a) This follows from the fact thatPw is a symmetric matrix andP2
w = Pw.

(b) This follow from the fact that

(PX∇)i u = PX∇u · ei = ∇u · PXei .

(c) We prove this property by brute-force calculations and, for simplification, summing
over repeated indices. Letei be the vector with 1 for itsi th component and 0 for the rest.
This means for thej th component, (ei ) j = δi j .

So we have

P∇u∇ · (P∇u X) = (P∇ui∇)l (P∇u X)i ,

= ∇((P∇u X)i ) · P∇uei

=
[(
δi j −

uxi uxj

|∇u|2
)

X j

]
xk

(
δki − uxkuxi

|∇u|2
)

=
[(
δi j −

uxi uxj

|∇u|2
)

X j

]
xi

−
[(
δi j −

uxi uxj

|∇u|2
)

X j

]
xk

uxkuxi

|∇u|2 .

Calling the first termI and the second termJ, we have

I =
[(
δi j −

uxi uxj

|∇u|2
)

X j

]
xi

= ∇ · (P∇u X),

and

J = −
[(
δi j −

uxi uxj

|∇u|2
)

X j

]
xk

uxkuxi

|∇u|2

= −uxkuxi (Xi )xk

|∇u|2 +
(

uxi uxj X j

|∇u|2
)

xk

uxkuxi

|∇u|2

= −uxkuxi (Xi )xk

|∇u|2 + uxi uxj (X j )xkuxkuxi

|∇u|4 +
(

uxi uxj

|∇u|2
)

xk

X j uxkuxi

|∇u|2

=
(

uxj uxi

|∇u|2
)

xk

X j uxkuxi

|∇u|2

=
(

uxi uxj xk

|∇u|2 +
uxj uxi xk

|∇u|2 −
2uxj uxi uxmuxmxk

|∇u|4
)

X j uxkuxi

|∇u|2

= uxkuxj xk X j

|∇u|2 − uxi uxj uxkuxi xk X j

|∇u|4

=
(

Xi −
uxi uxj X j

|∇u|2
)

uxkuxi xk

|∇u|2

= P∇u X · ∇|∇u|
|∇u| .
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So altogether,

P∇u∇ · (P∇u X) = ∇ · (P∇u X|∇u|) 1

|∇u| ,

which completes the proof.

Proof of Proposition 2. We prove the results in general forRn. We sum over repeated
indices for convenience.

(a) Fix a pointx on M . Let ν be the outward unit normal vector toM at x. Now, given
two orthonormal bases inRn, ei andẽi , with i = 1, . . . ,n, let δi andδ̃i be (Pν∇)i under the
framesei andẽi , respectively. This means

δi =
(
δi j − 〈ν, ei 〉 〈ν, ej 〉

|ν|2
)
∂ j

δ̃i =
(
δi j − 〈ν, ẽi 〉 〈ν, ẽj 〉

|ν|2
)
∂̃ j ,

where∂i and∂̃ i correspond to the framesei andẽi , respectively. Because of orthonormality,
we have that̃ei = ai j ej , with theai j forming an orthogonal matrix (i.e.,ai j aik = aji aki =
δ jk). Thus, we havẽδi = ai j δ j . Therefore,

ẽi δ̃i = ei δi .

Now, takingei , i = 1, . . . ,n, to be the standard orthonormal basis inRn andẽi , i = 1, . . . ,n,
to be an orthonormal basis ofRn with ẽn = ν, we get

ẽi δ̃i = ∇S

ei δi = Pν∇.

So

∇S = Pν∇,

and, especially, ifu is a real-valued function inRn, then

∇Su = Pν∇u.

(b) Continuing with the above computations, givenX a vector field inRn, we have

〈δ̃i X, ẽi 〉 = 〈δi X, ei 〉.

Therefore,

∇S · X = Pν∇X.

Proof of Proposition 3. Apply Proposition 7 withβ(p) = |p|, p ∈ R3.

Proof of Proposition 4. See proof of Lemma 1 in [3].
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Proof of Proposition 5. See main body of section for proof.

Proof of Proposition 6. With β(p) = |p|, we get∇β(p) = p
|p| and∇2β(p) = 1

|p| Pp.
So

∇2β

(
P∇ψ∇φ
|P∇ψ∇φ|

)
= PP∇ψ∇φ.

Therefore, using Proposition 8, we find that the principal matrix for the right-hand side
of the evolution equation isP∇ψ PP∇ψ∇φP∇ψ , and also that sincePP∇ψ∇φ is nonnegative
definite, with one zero eigenvalue and the rest being equal to one, the evolution equation is
thus degenerate second-order parabolic.

To actually find the eigenvalues of the principal matrix, we note that∇ψ andP∇ψ∇φ are
eigenvectors corresponding to the zero eigenvalue, sinceP∇ψ∇ψ = 0 andPP∇ψ∇φP∇ψ P∇ψ
∇φ = PP∇ψ∇φP∇ψ∇φ = 0, respectively. Also, given any other vector,v ∈ R3, perpendic-
ular to these two eigenvectors, we have

P∇ψ PP∇ψ∇φP∇ψv = P∇ψ PP∇ψ∇φv = P∇ψv = v.

Therefore, we can conclude that the principal matrix has two zero eigenvalues, with all the
rest being equal to one.

Proof of Proposition 7. See proof of Lemma 2 in [3].

Proof of Proposition 8. Let F(q, x) = P∇ψ∇β(P∇ψq)|∇ψ |. Then we have

(Fi )qj (q, x) = P∇ψ∇2β(P∇ψq)P∇ψ |∇ψ |,

where∇2β is the Hessian matrix forβ.
Therefore, the principal matrix for∇ · (P∇ψ∇β(P∇ψ∇φ)|∇ψ |) |P∇ψ∇ψ ||∇ψ | is

P∇ψ∇2β(P∇ψ∇φ)P∇ψ |P∇ψ∇φ|,

which can be rewritten as

P∇ψ∇2β

(
P∇ψ∇φ
|P∇ψ∇φ|

)
P∇ψ,

since∇2β is homogeneous of degree−1.
Therefore, if the matrixN = ∇2β(

P∇ψ∇φ
|P∇ψ∇φ| ) is nonnegative definite, thenxT Nx ≥ 0 for all

x ∈ R3. This implies that for anyy ∈ R3, takingx = P∇ψ y givesyT P∇ψN P∇ψ y ≥ 0 and so
P∇ψN P∇ψ is also nonnegative definite. Note that∇ψ is an eigenvector corresponding to
the 0 eigenvalue.

So we have shown that ifN is nonnegative definite, then the evolution equation

φt = ∇ · (P∇ψ∇β(P∇ψ∇φ)|∇ψ |) |P∇ψ∇ψ ||∇ψ |

is degenerate second-order parabolic.
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