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The level-set method has been successfully applied to a variety of problems that
deal with curves ifR? or surfaces ifR3. We present here a combination of these two
cases, creating a level-set representation for curves constrained to lie on surfaces.
We study primarily geometrically based motions of these curves on stationary sur-
faces while allowing topological changes in the curves (i.e., merging and breaking)
to occur. Applications include finding geodesic curves and shortest paths and curve
shortening on surfaces. Further applications can be arrived at by extending those for
curves moving inR? to surfaces. The problem of moving curves on surfaces can
also be viewed as a simple constraint problem and may be useful in studying more
difficult versions. Results show that our representation can accurately handle many
geometrically based motions of curves on a wide variety of surfaces while automati-
cally enforcing topological changes in the curves when they occur and automatically
fixing the curves to lie on the surfaces. The method can also be easily extended to
higher dimensions. @ 2002 Eisevier Science (USA)

1. INTRODUCTION

The problem of moving curves on surfaces is important in many applications. It can
thought of as a model constraint problem. Also, since it is an extension of curve motior
R?, we may be able to extend the applications found there to surfaces. Such work inclu
those on geometrically based motions, image processing, two-phase flow, and mate
science (see [21]). We mainly consider geometrically based motions here since they ar
integral part of all of the other applications. Curves on surfaces are also useful in the st
of surfaces. Geodesic curves and shortest paths are important elements of a surface ar
be computed using certain geometrically based motions of curves. We allow topologi
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changes to occur in the curves, as this is useful in many of the applications we h
mentioned.

One obvious way to move curves on a surface is by using a front-tracking algorithm. T
is where discrete points coming from a parametrization of the curves are evolved accort
to the flow (see, e.g., [12]). The main problem with this approach comes in finding wh
topological changes occur and enforcing the change when it does, a difficult problen
handle even for curves RR?. For this purpose, level-set-based methods are preferable sir
topological changes are automatically taken care of by the representation. Other issu
front tracking include keeping the curve on the surface for all time and reparametrizat
to preserve accuracy and remove stiffness. Thus, much of the work on moving curve:s
surfaces does not use this approach.

Previous work on moving curves on surfaces has mostly been confined either to spe
motions or to specific surface types. In [8], Chopp studied geodesic curvature motior
curves on manifolds by using a level-set approach. This motion is also known as curve st
ening or heat flow on isometric immersion (see [15]). Chopp’s method involved computi
on simply connected, coordinate patches of the manifold projecte@fmfhis algorithm
works for general manifolds as long as the patches are given. Finding the coordinate patc
however, is in general difficult. In [15], Kimmel also studied geodesic curvature flow usi
a different approach. He considered a surface given as a graph of a function and evc
the iso-gray-level contours of a function representing a grayscale image on that surfac
an application to image processing of images painted on surfaces. The algorithm, howe
can only handle surfaces that can be represented as graphs of functions. Other me
similar to this one can be found in [16, 17], and also in [11], which tackles the problem
grid generation. In [18], Kimmel and Sethian used a fast marching approach on level
functions to compute geodesic paths on surfaces. The surface is triangulated and the m
is a nontrivial extension of the fast marching method introduced in [30]. In particular,
generalizes the Hamilton—Jacobi version of [30], later derived in [10, 25]. The order
accuracy, however, is limited to first order and the algorithm becomes a bit more intric
in the presence of obtuse triangles. We also note that the work in [18], unlike ours, u
only local and intrinsic geometry to compute geodesic paths on surfaces, which has s
advantages in the case of a surface that goes through itself.

The method we construct is able to handle a wide variety of motions for curves on m
general surfaces as well as to automatically enforce mergings and breakings in the cu
It can be viewed as an extension of [15] using a level-set approach to more general mot
and surface types. Also, Bertalmab al. [2] have applied a method of the same flavor to
the specific problem of region tracking. We rederive and extend their results in Section
We now take a closer look at the standard level-set method for curR¥sand surfaces in
R?, as we will use the ideas there to form our method.

2. STANDARD LEVEL-SET METHOD

The standard, or original, level-set method [23] has been widely used to study cur
in R? and surfaces iiR3. In this method, curves are represented by the zero level sets
real-valued functions oR? and surfaces by the zero level sets of real-valued function ¢
R3. These particular functions are called level-set functions. In studying moving curves
surfaces, the level-set function is allowed to depend on time. Thus the zero level set at
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timet represents the curve or surface at that time. Also, the motion of the zero level set
now be carried out by evolving the level-set function. Usually this evolution is governe
by a partial differential equation. One benefit of evolving the level-set function instead
just its zero level set is that topological changes in the zero level set will be automatice
enforced. Note that the ability of a curve or surface to be represented as the zero level s
a function means the curve or surface must be the boundary of an open set. This limits
types of curves and surfaces a level-set method can handle but does not seem to be c
restrictive and is a natural setup for problems such as two-phase flow (see, e.g., [29]).

Solving the evolution equation associated to the level-set function usually needs tc
done numerically. For this, a uniform grid (usually) is placed in all of space, (Rfng
for curves andR® for surfaces. Finite-difference schemes are then used to discretize |
evolution equation. An advantage of this approach is the ability to easily construct hic
order numerical discretizations on uniform grids. Efficiency both in memory and in spe
can still be preserved by only storing data and computing near the front [1, 24], thou
sometimes at the price of a loss of accuracy.

The main advantage of level-set methods, however, is that mergings and breaking
the curves are automatically handled by the representation. The time of this happel
does not need to be computed and no extra work is required to enforce the topolog
changes, unlike with front-tracking methods. The evolution equation is simply solved
the same way at every time step up to the desired time. The curve can then be interpol
from the level-set function at the end of a run, when the curve is then plotted. Duri
the run, the curve location is not needed and can remain uncomputed. Although eas
handling topological changes is one of the main reasons for using level-set methods,
are nonetheless attractive even when topological changes do not occur because of the s
and accurate finite-difference schemes on uniform grids that can be used. Thus the leve
method can be easily programmed and used. More on the level-set method can be foul
[21]. All this naturally leads us to attempt to use a level-set-based method for our probl
of curves on surfaces.

2.1. Setup

In tackling the problem of moving curves constrained on surfaces, we begin by us
a level-set formulation to represent the curves and surfaces. Thus given a collectior
surfacesVl in R® and curves’ on those surfaces, we represthby the zero level set of a
real-valued functiony on R® andy by the intersection of the zero level set of a real-valuec
function¢ on R® with the zero level set ofy. As before, we call these functions level-set
functions. Since we mainly consider the case whdris static in time will not depend
on time. On the other hand, in order to study moving curves on surfaces, gvddpend on
time. Thus the time evolution @f allows us to follow the moving curves, keeping in mind
that the curves at timeare the intersection of the zero level set)ddit timet and the zero
level set ofyr. In our representation, only a specific class of surfaces, boundaries of of
sets inR3, can be handled by this method. Similarly, only a specific class of curves on t
surfaces, boundaries of open setdwycan be considered. This implies that there is a notiot
of the inside and outside of the curves or surfaces and we take, for definiteness, the in
to be where the level-set function is negative and the outside to be where it is positive. O
again, this is especially natural, for example, for curves denoting the interface between
fluids onM. We also note thaf andg need only be defined in a neighborhood of the curve:
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and not necessarily in all 2. However, for simplicity of exposition, we continue treating
them as functions over all &2. The only concern is when we need to slightly modify the
method to obtain optimal efficiency both in speed and in memory usage. This is discus
in Section 8.1. Finally, we can study constrained flows in other spatial dimensions by tak
¥ and¢ to be functions irkR".

Note that our setup is basically the same as in [3] exceptjthanow held fixed in time.
Thus the constrained problem of moving curves on surfaces turns out to be easier, usin
setup, than the unconstrained problem of moving curve®®inWe now develop various
notations and tools for our representation to help simplify and clarify future calculation:

3. PRELIMINARIES

Given a vectomw in R3, let P,, be the orthogonal projection matrix defined by

ww
Pp=1——r,
[w]

wherel is the identity matrix. Thus the components of the matrix are

Wi Wj
(Pw)ij = &ij R

whereg;; is the Kronecker delta function. Note that foin M andv the normal vector in

R3 of M atx, P, projects vectors ontM at x (i.e., P, projects vectors onto the tangent

plane ofM at x). Now for X a vector field inR®, we define the differential operaté vV

by its components,

3 Xi Xi
(PxV)i = Z <5ij — |X—|2]>axj‘

=1

Note that this is just the projection matri multiplying the gradient vector operator in
R3. In fact, given a real-valued functianon R3,

(PxV)u = PxVu,

and given a vector fieltt onR3,

3

PxV .Y = (PxV)Yi.
i=1

We constantly use this notation with the vector fiddd= Vi, which is parallel at each
point in R3 to the normal vector of the level-set surfacejothat passes through that point.
So given a poini in R®, Py, projects vectors onto the level-set surfaceyopassing
throughx. Therefore, ifx € M, Py, will project vectors ontdv atx. This is very useful
for putting vector fields onto surfaces. Note especially #af Vu, evaluated orM, is
the projection of the gradient vect®u in R® onto M. This turns out to be equivalent to
the surface gradient af on M. Similarly, Py, V - X, evaluated orM, is equivalent to the
surface divergence of on M. We now present a few useful properties of this operator.
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PropPosITION1. Letv, w, z be vectorsX a vector field and u a real-valued functiaon
all in R3. Also let ¢ denote the ith vector of the standard orthonormal basiRafThen
we have the following identities

@ Pyv-z=v-P,z=P,v- P,z.
(b) (PxV)iju=Vu- Pxe.
© PouV - (PeuX) =V - (PuX|VU]) gy

3.1. Projecting R’ Equations onto Surfaces

In the course of studying the motion of curves on surfaces, we need to study pat
differential equations on surfaces. Usually, from work already done using the original lev
set method, we already know the form of the partial differential equation corresponding
the same type of motion for curves R?. Thus one easy way to get the correct evolution
equation on the surface would be to change the equation for curRgsdncordingly (i.e.,
projecting it onto the surface), hopefully preserving its important properties.

Given a pointx on M, we project the form of the equation onto the surface at this poin
Let v be the normal vector dfl atx and let&;, &, & be an orthonormal basis &° with
e; = v. Also letd; be the derivative correspondingéai = 1, 2, 3. We can then write the
partial differential equation oM at x by treating the tangent planexatasR?, where the
form of the equation is known. This means we project all quantities iRfreuation onto
the tangent plane at This just involves changing those quantities to fit the new fréme
andé&,. Note that this especially involves the surface gradient vector operator defined b

VSu = 9,u8; + ,Ud,,
for u a function onM, and
VS X = (31X, &) + (32X, &),

for X a vector field orM. For example, oiM and atx, the Laplacian of a function takes
the formd 191U + 9,9-u, which can be written a8 - VSu, the Laplace—Beltrami operator
applied tou. So in this caseY is simply replaced by S to get from theR? Laplacian to
the surface Laplacian. We use this procedure to project other partial differential equati
in R? onto surfaces. Assuming that the important properties of the equations are prese
during this transition, this is a quick way to get the evolution equation we waM .on

The main replacement when projectiRg partial differential equations onto surfaces is,
as we have seen, changiRgto VS. The connection between the surface gradiehand
our previous operatdPyy, V is given by

PropPosSITION2. We have the following properties

(a) For u a real-valued function ifR3,
VSU = PV]/,VU

on M, whereVSu means the surface gradient applied to the restriction of u on M.
(b) For X a vector field irR® which is tangent to M on M

VS. X =Py V- X
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on M, whereVS . X means the divergence of the restriction of X on M with respect to tt
surface gradient.

SoVSand Py, V are equivalent oM. The difference is thaPy, V is easier to deal with
numerically. Because of this, we write all our equations using this form. We also note
importance of replacing the integral oVR%, Jre A%, with the surface integral d A, which

is equivalent tofR3 s(y)|Vy | dx, when projectindR? equations onto surfaces. Finally, the
R? equation should be invariant under a rotation of frameR3notherwise projecting it
onto the surface may not be a well-defined process.

Thus using all our tools, we can easily write all the geometric quantities of curves
surfaces in terms of our representation (i.e., in termg &nd ¢). We see examples of
this later on when dealing with various geometrically based motions. Examples can alst
seen in [3] for the case of unconstrained curves moving3nFor more on the geometry
of curves and surfaces and partial differential equations, see [9, 27].

4. GENERAL NUMERICS

The main advantage of our approach lies in the effective numerical schemes that ca
used to solve the partial differential equations associated with the motions. In general,
lay down a uniform grid irR3. In reality, not all the points in this grid need to be used sinc:
we only have to solve the equation in a neighborhood of the curves. This is called a Ic
level-set method (see, e.g., [1, 24]), which we discuss later. The level-set fungtaomdp
are either given or created on this grid initially. The partial differential equatiog fethen
solved by using appropriate finite-difference schemes, which the uniform grid lets us ea
create and implement. Also, note that under our representation, the curve will not leave
surface and so the constraint that the curve lies on the surface is always satisfied. In
the curve location does not need to be determined for our computations but only when
curve is to be plotted. The plotter we use is the one used in [3], which divides the space
tetrahedra and uses linear approximationgraind¢ in each tetrahedron to solve for the
intersection of the zero level sets. This is a simplification of the marching-cubes algorit
[19]. The level-set method representation also automatically takes care of any merging
breaking that may occur. The partial differential equations for the evolution are just sol\
in the same way until the end time regardless of whether topological changes have occt
or not. Of course, this ease in handling topological changes is one of the main reason
using a level-set-based method. However, the method is still attractive in general becau:
its simplicity in using uniform grids and finite-difference schemes. Finally, note that ve
complicated surfaces are easily taken care of sintegiven as a set of data on grid points.

The numerical algorithm can easily be extended to higher dimensions but because o
uniform grid, operating in very high dimensions can be overly expensive. Computift in
is viable but above this, the method may not be the most efficient.

5. INTRODUCTION TO FLOWS

In the following sections, we use our format to generate and solve evolution equati
for curves on surfaces moving under constant normal flow, geodesic curvature flow, W
flow, and flow under fixed, enclosed surface area. In the process, we develop other use
these flows, such as obtaining signed distance functions, geodesics, Wulff minimal cur
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and Wulff shapes. These flows and their applications all come from flows and applicatit
for curves inR? (see [21]). Finally, we extend our results to allow the surface to also mov
We mostly derive the evolution equations in multiple ways, by projectinR%aquation
onto the surface, by finding a velocity field under which to move the curves, and sometin
through modified gradient descent minimizing an energy. The first way is quick and e:
but the other ways are more geometric and intuitive.

As notation, we use the term surface to denote the types of surfaces generated by
level sets of level-set functions and the term curve to denote the types of curves gener
by the intersections of zero level sets of two level-set functions. Note thus a curve or surf
may actually be a collection of curves or surfaces.

6. FLOW UNDER A GIVEN VELOCITY FIELD

We first consider the simple problem of moving a curve on a surface under a given ¢
fixed velocity field tangent to the surface. This can later be used on more general motion
looking at more general forms of velocity fields. The first step is to extend all our quantiti
to R3, creatingy from the surface, an initiap from the curve, and from the velocity
field, unless these are already given there initially. There are various numerical meth
that can do this (e.g., the method used in [5] or the fast-marching methods of [10, 25, 3
The evolution forp then becomes

¢t + Pyyv-Ve =0,

which means we are moving the level setssagh R® under the velocity fieldPy, v. The
projection matrix in front ofv keeps each level set @f independent from the others so
that the flow on one level set @f will not affect or be affected by the flow on the others.
Note that on the surface we are interested®n, v = v. So under this velocity field, for a
given level-set surface af, the level sets of on that surface will move according to the
velocity field projected onto that surface and, especially, the zero level gatothe zero
level-set surface ofs (i.e., the curves o) will move according taw on M. This means
the evolution equation gives the flow dn under the velocity field, which is what we
want.

A more detailed way to see this is to look at the surfate= C,} and the curve on that
surfacey (s, t) obtained from the intersection g = C,}, taken at time, with the surface.
We study the flow ofy on the surface according to a vector field tangent to the surfac
Pyyv. Considering gener&; andC, allows us to obtain an evolution equation valid in all
of R3. From the definition of/, we havep(y,t) = C; for all s andt. Therefore, taking a
derivative with respect tbgives

Vo(y,t) -+ d(y, 1) =0.

The curve moving under the vector fieRy, v implies thaty; = Pyy, v(y). Therefore,
the form of the equation becomes

& (v, ) + Poyov(y) - Vo(y, 1) =0.
So, on the curve, we have

¢t+ vaU-V(ﬁ:O.
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SinceC; andC; are arbitrary, we then infer that this equation is valid in alRgfgiving us
back the same equation as before.

Our process of projecting? evolution equations onto surfaces gives the same evolutic
equation. For curves iR? and using the original level-set method, the evolution equation |

¢t +v-Vop =0,

wherev is a velocity field given irR2. We want to look at the form of this partial differential
equation on the surfadd (i.e., project the equation onto the surface). Gixean M, note
V1 is normal toM atx and let&,, &, & be an orthonormal basis R® with & = ‘g—% at
x. This frame then allows us to define the surface gradient opevitat x as before, and

so the equation on the surface takes the form
¢ +v- VS =0,
or, in detail,
¢+ (v, 81010 + (v, &)2¢ = 0.
This can be rewritten in the usual format,
¢t +v-PyyVe =0,

which is equivalent to what we obtained previously. So projectindRthequation onto the
surface also gives the correct evolution equation.

The derived evolution equation is a partial differential equation of Hamilton—Jacobi for
and can be numerically solved using total variation diminishing Runge—Kutta (TVD-RK)
third order in time (see [26]) and the Hamilton—Jacobi weighted essentially nonoscillat
method (WENO) of fifth order in space using the Godunov scheme [13]. The associa
Courant—Friedrichs—Lewy (CFL) condition says tiAdt the time step, must be less than a
constanttimedx, the spatial step, with the constant depending on the magnitudétsio,
the singularity arising fromiVy,| = 0 needs to be regularized. This can be accomplishe
for example, by replacingv| with \/|V|2 + €2, wheree is positive and very small,
when it appears in a denominator.

The above process can then be used to derive evolution equations for more general fl
First, a valid velocity fieldv, which now may depend o# and its derivatives, must be
derived. This will depend on the type of flow being considered. Then the evolution equat
will take the same form as above,

¢t+ vav-V(f):O.

This equation moves the level setsiah R® under the desired velocity field and thus moves
the zero level set @ on M according to the flow being considered. It is also valid in more
space dimensions, whegeand¢ are real-valued functions d®" and the projection matrix
is ann by n matrix. Note that we cannot use the above discretization any more for gene
v. The valid discretization of the equation will depend on the fornw;dfor example, if
—Pyyv - Vg is elliptic, then we can use central differencing. We constantly use this veloci
field process to derive and validate the evolution equations for our flows.
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7. CONSTANT NORMAL FLOW

A difficult but important flow involves moving a curve in the outward normal directior
at a constant speétion the surface. This means that at timghe curve we are looking for
is the set of points of distand®@t, measured on the surface, away fregin the outward
direction. Note that moving inward correspond<tdeing negative. For curves RY, this
flow has been used to model flame fronts (see [20]) and is an integral part of many of
applications (see [21]).

We first use our approach to projectiRg equations onto the surface to quickly generate
the evolution equation. The corresponding evolution equation for curv$, insing the
original level-set method, takes the form

¢ +C|Ve| = 0.

Once again, giver on M, let&;, &, & be an orthonormal basis R®, with & = % atx.

This allows us to defin& S atx and so the evolution equation on the surface takes the fori
¢t + CIV3| =0,

or, in detail,

¢+ C/ (310)2 + (3202

This can then be rewritten as
¢t + C|Pyy V| =0,

which is the correct equation. We do, however, verify that it indeed moves a curve in
outward normal direction at spe€dby rederiving it using the more intuitive velocity field
approach.

In the velocity field approach, we want to calculate a velocity fielahder which the
level sets ofp, and especially the zero level set, will move in the correct manner. F
fixedt, consider the surface/ = C;} and the curve generated by intersecting this surfac
with {¢ = C,}, whereC; andC, are constants. Note that the case we are interested in
C1 = C, = 0 but by considering arbitrai@; andC,, we obtain a velocity field valid in all
of R® which can be used to evolyein R3. Now, on this curvey should be normal to the
curve, have lengtlt, and be tangent to the surface. Sudhgives the desired motion for
the curve on the surface. From this, we deduce

_c Pyy Vo
|Pyy Vol

Note that since we are iR®, we could use vector cross products instead, along with th
identity

Poy Vo _ V¥ x (Vo X V)
Py Vol — IV¥ x (Vo x Vi)l
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to rewrite our expressions since

IV PPy Vo = [V PVe — (Vi - V)V = Vi x (Vo x V)
however, we stick with the more general form. AlsoCif= 1, note thatv becomes the

outward normal of the curve on the surface. We use this fact in many later computatior
Under such a velocity field, the evolution equationgatiakes the form

$r+v-Ve =0,

sincePy, v = v. Simplifying, we get

V-V = c PvwVe Vo,
|Pyy V|
Py, V¢
=C- V'Y p,, Ve,
Poyvgl VO
= C|Pyy Vo,

where the second equality uses Proposition 1a. So the evolution equation for moving cu
on surfaces by constant normal flow is

¢t + C|Pyy, Vol =0,
or, using vector cross products,

VY x Vol _

C
ey

This is the same equation we obtained previously by projectin@Rthequation onto the
surface.

Note that if we have a partial differential equation of the above form, even @ith
depending onp and its derivatives, then we say the curve will move by speéed the
normal direction. In fact, all evolution equations for flows can be written in this form. Thi
is because given a velocity fieldangent to the level-set surfaces/ofthen at each poirx,
we can decomposein terms of| :zgzl and the vectors perpendicular to it. ThusPy, V¢
is equal toC| Py, V|, for someC, and so moving under the vector fialds the same as
moving in the normal direction by spe€x

The partial differential equation we derived withconstant is of Hamilton—Jacobi form
and so we discretize it using Hamilton—Jacobi WENO of fifth order along with local Lax
Friedrichs (LLF) in space and TVD-RK of third order in time. To satisfy the CFL conditior
At needs to be smaller than a constant times The term|Py,, V¢| is also regularized
to remove the singularity arising frofV+y| = 0, and|V| can be approximated using
high-order central differencing.

In Table I, we see that our discretization has a high order of accuracy before merg
occurs. This was checked for a circle moving on a sphere by unit normal flow (i.e., fl
in the normal direction at unit speed). The fifth-order accuracy in spite of the third-orc
TVD-RK used is also occasionally seen in the original level-set methods. We note t
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TABLE |
Order-of-Accuracy Analysis for Unit Normal Flow

Grid size Error Order
32x32x32 0.000343431

64 x 64 x 64 860357x 10°° 5.3189

128x 128x 128 170799x 1077 5.6546

Note.The example considered was a circle moving on a sphere. The results
show high-order accuracy, with errors measured before merging occurs.

when the whole algorithm, including the second-order accurate plotter, is tested, we
second-order accuracy instead.

In Fig. 1, we show a curve moving over two mountains by unit normal flow. The cun
breaks into two pieces, with each piece moving up each mountain. In Fig. 2, we show a cL
moving on a volcano. The curve starts outside the volcano and goes up and into the cor
Fig. 3, we show a curve on a two-holed torus. The curve moves across the two-holed tc
breaking and merging multiple times. Thus we see that the motion of the curve by cons
normal flow on complicated surfaces, even when merging occurs, is easily handled by
algorithm. Finally, we show in Fig. 4 flow in the normal direction at a nonconstant spee
For each point on the curve, this speed is equal to a fungtiesaluated at the outward
normal vector of the curve. The function we choseg(g) = |X1| + |X2| + |X3|, which is
related to crystal shapes. Note the squarish aspect of the growing curve.

We can also study the behavior of the flow in higher dimensions. The evolution equat

¢t +C|Pyy Vo] =0

is still valid with » andg real-valued functions over the spa®® When we drop a dimension

FIG. 1. The surface, two mountains, is shown on the left and the evolution of a curve is shown on the rig
The curve is moving inward by unit normal flow and breaks into two smaller curves, one on each mountain, du
the flow.
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0.5 4

=1~

FIG. 2. The surface, a volcano, is shown on the left and the evolution of a curve is shown on the right. 1
curve is moving inward by unit normal flow and flows up the side of the volcano, then down into the core.

and flow points on curves, the evolution equation takes the form

[Vydx — Uxdyl
IV

Note that the numerator of the second term is the absolute value of the Jacofiandf
¢. Thus it is possible, for example, to perform constant normal flow of a two-dimensior

¢ +C =0

FIG. 3. The surface, a two-holed torus, is shown on the left and the evolution of a curve is shown on the ri
The curve is moving inward by unit normal flow, translating to the left on the two-holed torus while breaking a
merging multiple times.
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FIG. 4. The surface, a folded plane, is shown on the left and the evolution of a curve is shown on the rig
The curve is moving outward in the normal direction by a nonconstant speed. The chosen speed, related to ¢
growth, causes the curve to develop a squarish aspect as it expands.

surface constrained on a hypersurfac&fror constant normal flow of points constrained
on acurve.

8. SIGNED DISTANCE FUNCTION

In an extension of constant normal flow, we wish to find the signed distance of each pc
on a surfaceM away from a curves confined toM. The signed distance dvl of a point
away from a curve is the minimal distance measured on the surface, with a negative sic
the point lies inside the curve, from that point to the points of the curve. Obtaining sign
distance allows construction of geodesics and can be used for path planning on manift
It can also reveal important information about a surface’s geometry. We solve the probl
by settingys to haveM as its zero level set and trying to find a real-valued functian
R?® such that given a point € M, d(x) gives the signed distance ®faway fromy. The
functiond is thus uniquely defined oM, though not irR3, and we calll a signed distance
function ofy on M. Note that since oM, d = 0 only aty, we have as before, thatis the
intersection between the zero level setg/adindd. Also note that this problem is different
from the ones we have previously studied because we are looking for a function define
all of M rather than one defined neamonly.

For y, a curve inR?, finding the signed distance function using the original level-se
method [29] is accomplished by introducing a time element and creating a partial differen
equation whose steady state solution values give signed distance. Starting with a leve
function¢ initially having y as its zero level set and being negative insidéhe equation

¢ +sgno(x,0)(IVel —1) =0

will give signed distance as its steady state viscosity solution. The signum function ke
¢ = 0 ony for all time and the rest of the equation tries to fof8&y| = 1, making the
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steady state solution a signed distance function. We derive the correct evolution eque
on the surface in two ways, by looking at this equation written on the surface and by us
the philosophy behind this equation to recreate it on the surface. In projecting the equa
on the surfacéM, we fix x on M andé,, &, & an orthonormal basis &2 with &; = \gﬁ
atx. ThenVSis defined ak and the equation takes the form

¢ + sgng(x, 0)(|V3p| — 1) = 0,

or, in detail,

¢+ SN (x, 0)(y/ (919)% + (524)2 — 1) = 0.

This can then be written as

¢t +sgne(x, 0)(|Pyy Vol — 1) = 0.

This is the correct equation but we rederive it in a more detailed and intuitive way
following the basic philosophy behind tiR# equation.

Tofindd on M, we can imitate the method for curvesRA (i.e., introduce a time element
and create a partial differential equation that tas its steady state solution &h). Let ¢
initially be such that the intersection of its zero level set Witlis y, with ¢ negative inside
y. If ¢ is a signed distance function on the surface, then it must saisfyVe| =1 (i.e.,
|VSp| = 1) on M. So we wish to create an evolution equation such thavigthe steady
state solution satisfies this property while keeping the zero level gefixdd at its original
position. One such candidate is

¢t +sgne(x, 0)(|Pyy Vol — 1) =0,

which is the same as the equation we derived previously. The steady state viscosity solt
on M of this evolution equation will bel. Note that the evolution equation is solved in all
of space but steady state may sometimes only be achievwdd at

ExamMPLE. We consider the surface to be a circle of radiusThus we can take¢ =
/X2 + y?2 — R. Suppose the initial curve on this surface is taken to be the intersection
the zero level set of with the zero level set afy = y. Thus

-3y

and

b _ Sirt 9 —0s8 sing
Y\ —cosfsing cogo '

whered denotes the angle in polar coordinates for the poinyf andr = /%2 + y2. So

sin

0 .
Pyy Vo = (_ 039) (¢x Sing — ¢y cOSH)

_ sing \ ¢y
- <—cos@)r
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and

ol

|Pyy Vo| = ;

Our evolution equation thus becomes
ot + sgny(ld;—g| — 1) =0.

In the first quadrant, the viscosity solution of this equation is

¢:{¢O(r,9—})+t re >t

ro ro <t,

and similarly for the other quadrants. Note that the signed distance function has kinks at
north and south poles, where the intersection of the zero level sets of the level-set funct
is degenerate.

The signed distance evolution equation is also valid in space dimensions other the
and, in fact, the equation for distance on curveR#rtakes the form

VIVYIRIVER — (Vi - V)2 1> _o

o +sgr(¢>(x,0))( VU

In R3, with vector cross products, the equation can be written as

VY x Vg _1> o
VY|

The signed distance evolution equation is of Hamilton—Jacobi form and we solve it us
the Hamilton—Jacobi fifth-order WENO-LLF in space and third-order TVD—RK in time
We also replace the signum function with a smooth version (see [24]) and regularize
remove the singularity occurring & ,| = 0. To satisfy the CFL conditionAt needs to
be less than some constant multiplesot. Also, for efficiency, a moving-band algorithm
can be used (see [21]).

In Table 11, we see that the algorithm for finding signed distance functions is first-ord
accurate even away from kinks. This is because the curve is moved slightly during iterati
of the method. Theoretically this should not happen, but because of the numerical sigr

¢ +sgnio (X, 0))(

TABLE Il
Order-of-Accuracy Analysis for the Signed Distance Function

Grid size Error Order
32x32x32 0.020416
64 x 64 x 64 0.0106933 0.9330
128x 128x 128 0.00526517 1.0222
256 x 256 x 256 0.00261509 1.0096

Note.The curve from which distance was measured was a circle and the
surface was a sphere. The results show first-order accuracy.
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TABLE 11l
Order-of-Accuracy Analysis for the Signed Distance Function
Measuring ||Py,, V| — 1]

Grid size Error Order
32x32x 32 0.000527837

64 x 64 x 64 473339x 10 6.8011

128x 128x 128 475352x 108 6.6377

Note.The curve and surface were the same as in Table Il. The results show
high-order accuracy.

function and because of the grid, we see a small shift. Table Ill shows that the method
a high order of accuracy away from kinks when looking at the quafity, vVd | — 1. So
altogether, this means the numerically computed signed distance function is a high-o
signed distance function for a slightly perturbed curve.

In Fig. 5, we show a curve on a volcano along with the other contours of the distar
function. Note the contours are well spaced. In Fig. 6, we show a curve on a torus als
with the other contours of the distance function. Once again, the contours are well spa
Thus we see that the signed distance function may be used to create grids on surface:

8.1. Keeping Level-Set Functions Well Behaved during Flows

One important application for signed distance functions is the role it can play in keepi
the level sets of a level-set function well behaved on the surface during a flow. This he
reduce numerical inaccuracies that may appear from an overly steep or flatlevel-set func
For curves inR?, this is accomplished by making the level-set function into the signe

FIG.5. The surface, a volcano, is shown on the left and the contours of the signed distance function are st
on the right. The picture is similar to that of constant normal flow on a volcano. Note the contours are well spa
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057"
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FIG. 6. The surface, a torus, is shown on the left and the contours of the signed distance function are sh
on the right. Note the contours are well spaced on the torus.

distance function to its zero level set at each time step of the flow. We can do the same
level-set functions on surfaces. Note that siffoean be chosen to be well behaved or made
so by replacing it with the signed distance functiorRihito its zero level-set surface, we
only study the effect that differeigt have and assumg is already well behaved.

Certain types of flows may result in a bunching of level sets, where the function restric
on the surface is steep, or a spreading out of level sets, where the function is aln
flat (see, e.g., [7]). Numerically, this is undesirable and may introduce large errors in-
finite-difference approximations. Further errors may also be introduced when interpolat
to find the location of the curve, especially if the function on the surface is almost fl;
Finally, flatness may cause singularities if we need to divide by the magnitude of the surf
gradient, as is done in geodesic curvature flow. But if the level-set function is constrair
to be a signed distance function, then the surface gradient will have a magnitude of ve
1 everywhere except at kinks. This makes the level-set function well behaved, especi
and most importantly near the curve. When we consider a particular flow (i.e., solve
evolution equation fog), the signed distance constraint is usually enforced by iteratin
the corresponding partial differential equation a few times after every time step of the flc
We only need to iterate a few times since usually only the information around the cul
affects its motion and so we only need to enforce signed distance in the neighborhoo
the curve. Note that the zero level setgotheoretically remains fixed when iterating to a
signed distance function and so this process should not affect the flow of the curve on
surface.

Another way computations may break down is when the level setsbetome tangent
to the surface. Note that this has to do not with the level seis @f the surface, where
the signed distance constraint makesvell behaved, but with the behavior of the level
sets ofg off the surface. For example, = x, — Cx, is already a signed distance function
on the surfacex; = 0 for all C > 0, but asC tends to zero, the level sets ¢fbecome
tangent to the surface. Thus the surface gradient becomes zero, and especially numer
inaccurate, and also any small perturbatiog ehay greatly shift the location of the curve
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or even introduce spurious curve parts. To prevent this from happening, we want to m
the level-set surfaces gfperpendicular tdvl on M, especially near the curve. This can be
accomplished by iterating a few steps of the partial differential equation

Vi _
¢t +ng(1/f)w V¢ =0

at each step of the flow after signed distance is enforced. Note that this equation fo
i - V¢ = 0 at steady state, so the level setgafiill be perpendicular to the surface. It
also keeps the level sets ¢ffixed on the surface so that signed distance on the surface
preserved. The fast-marching methods in [10, 25, 30] might also be used in place of
above patrtial differential equation.

The partial differential equation is of Hamilton—Jacobi form and we solve it using a fiftl
order WENO-Godunov in space and a third-order TVD-RK in time. The CFL conditic

says thatAt needs to be less than a constant multipléaf

8.2. Geodesics

The signed distance function can also be used to compute geodesics on surfaces
points to curves. This means that given a cynen M, we want to find the shortest path on
M from any point orM to y. This can be accomplished by using a signed distance functic
d of y on M. In fact, the shortest path is simply the part of the integral curve of the vect
field —d Py, Vd drawn from the chosen point ja This simply means that the shortest path
starts at the chosen point and follows the steepest descent directioondfl with speed
d. The speed is thus zero atand so we follow the integral curve until convergence. The
integral curvesy(s), of the vector field are curves R® and can be computed according to
the ordinary differential equation

Y(S) = —d(Y(9)) Pyy (ys) VA(Y(S)).

For a chosen point on M, the geodesic fronx to y is thus found by solving the above
ordinary differential equation with initial conditioj{0) = x. This can be done numerically
using a Runge—Kutta scheme.

When we want the geodesic between two poinasidb, we can first get d which gives
the signed distance function to a small curve surrounding the point a (i.e., approxima
a). Thend = d + d(a) is an approximate signed distance functioraton the surface,
which is exact when the small curve approximata at a uniform distance away from
a. Using thisd in the ordinary differential equation above along with the initial conditior
x(0) = b allows us to calculate an approximate geodesic. Or we can require that sig
distance be given initially in the neighborhood of the pairgnd then solve for a signed
distance functior to a on M by iterating the corresponding evolution equation, but only
outside the neighborhood of initial given values, the given values being fixed. We can tl
use thisd along withx(0) = b for our initial condition to calculate geodesics.

A drawback of this signed distance function method for geodesics is that when there
two or more geodesics, we have almost no control over which one or whether any will
chosen. Also note that numerical approximations of the geodesics are not forced to lie
the surface in the same manner as with our basic representation. Only the order of acct
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FIG. 7. The volcano surface is shown on the left and geodesics from various points to a curve in the volc:
core are shown on the right. The geodesics travel up the volcano and down into its core.

of the ODE solver keeps computed geodesics close to the surface. However, a proje
of the computed point at every RK step can also be implemented to fix this.

In Fig. 7, we show a curve in the core of a volcano and the geodesics from certain po
to that curve. The geodesics travel up the volcano and down into the core to reach the ct
In Fig. 8, we show a curve wrapped around a torus and the geodesics from certain pc
to that curve. The geodesics travel across the torus and around the hole to reach the ¢
Thus we see how the signed distance function can be used to find geodesics from poin
curves on surfaces.

=1

FIG. 8. Atorus is shown on the left and geodesics from various points to a curve on the torus are showr
the right. The geodesics travel across the torus, around the hole in the middle, to reach the curve.
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9. GEODESIC CURVATURE FLOW

One of the most important geometric motions of curves on surfaces is geodesic curva
flow Figs. 9—12. This motion is important as curve shortening and can be used to
geodesic curves of surfaces and even to generate minimal surfaces on hypersurfac
R*. Constructing the correct evolution equation can be accomplished in a few ways, al
which lead to the same equation. The first way is by projecting the corresponding evoluf
equation for curves iR? onto the surface. The second way involves finding the curvatul
times normal vectors of the curveR? and projecting them onto the surface. This gives the
velocity vectors with which to move the curve. The third way is studying modified gradie
descent minimizing the length of the curve constrained on the surface. The fact that thes
all equivalent means that moving a curve by curvature is a minimization of the length of
curve.

First method: ProjectindR? equation onto a surface.We note that the corresponding
evolution equation ifR? takes the form

_ Vo
@_v(wm)¢'

wherevV . ( ) is the mean curvature of the curve. Giveron M and an orthonormal

basiséy, &, e3 |n R3 with &; = V—% atx, we can defing’S atx. So the partial differential

equation put ontd/ at x takes the form

VS
%zVS<W£JW%L

-1 o

FIG. 9. A simple surface is shown on the left and the evolution of a curve under geodesic curvature flov
shown on the right. The curve shrinks on the surface, minimizing its length, until it disappears.
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where, in fact,VS. (|§Z$|) is the geodesic curvature of the curve. In detail, the equatio
is

b = <51( 919 ) + 52< 920 ))\/(51@2 + (52002,
VG197 1 (302 VG 1 (30

5 < 51¢ > x ( é‘2¢ )
1 + 92
V(010)% + (320)2 V(019)2 + (320)2

the geodesic curvature. We then rewrite all this, using Proposition 1c, as

Py, Vo ) |Pyy Vol
=V. \VJ ,
4 <|PW,V¢|' V) v

with

Py Vo ) 1
V- v
(IF’waI| V! IVl

the geodesic curvature. This equation translates to moving a cur onthe inward
normal direction by geodesic curvature, which is what we want.

Second method: Projection of free-space curvature times normal ve@onsider the
surface{yr = C;} and the curve generated by intersecting this surface With- C,},
with C; and C, constants. This means th&t) x V¢ taken on the curve is parallel to
the tangent vector of the curve. So the tangent vector of the curve can be written
T= |§$§§Z|' Now the curvature times the normal vector of the curv®m« N, is the
change in the tangent vector along the curve. Therefore, using directional derivatives,
get

kN =(VT,-T,VT,-T,VT3-T),

whereT = (Ty, Tz, T3) (see [3]). We now project this onto the surface toBgj« N. Using
this as our velocity field leads to the evolution equation

¢t = —Pv]pKN . V(f)

This equation also gives geodesic curvature motion of curves on surfaces.

Third method: Energy minimizationWe consider the energy

E(p) = /R35(¢)5(1ﬂ)|PwV¢IIVIﬂIdX,

which gives the length of the curve represented by the intersection between the zero |
sets ofg andyr.
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ProOPOSITION3. The Euler-Lagrange equation of this energy is

Pyy Vo >
0=-V.| ———|V 1) 5(p).
<|PWV¢|| V| |8()s(p)

Replacings (¥)3(¢), which we treat as smoothed-out delta functions, vﬁ%ﬁ in our
gradient descent gives us the evolution equation

Pyy Vo ) |Pyy V|
= V . V s
» (|va¢|' V) v

which is exactly what we got using the first method. Note that because everythingds in
we can also write this equation as

bV ((W X V) xw>|w x Vo
t VY x Vg VR

We made the above replacement because it matches the equation derived using th
method. Also, according to standard level-set practice [31], we se&(ihgi(¢) should be
replaced by a quantity that yields a gradient descent algorithm for minimizing the enclo
surface area of with inward normal flow at unit speed. The enclosed surface area f
our curve onM s given by [, H(—¢)3(y)|Vy | dx, wherey is static andH is the one-
dimensional Heaviside function. So the Euler-Lagrange equation is

0=—=8(p)s(Y)IVYI,
and gradient descent with the above replacement gives

VY x Vel

=0,
N V|

which is inward normal flow at unit speed.

Equivalence. We now show that the evolution equations for the first and third metho
are equivalent to the evolution equation for the second method. The main result is
following identity:

PROPOSITION4.

V- (TxVy)=«N- - (V¥ xT),

where

VY x Ve
VY x Vg’

Using this to expand the right-hand side of the evolution equation in the second mett
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TABLE IV
Order-of-Accuracy Analysis for Geodesic Curvature Flow
of a Circle on a Sphere

Grid size Error Order
32x32x 32 0.00203138
64 x 64 x 64 0.000540219 1.9108
128x 128 x 128 0.00014037 1.9443

Note.The result shows second-order accuracy.
we get

—PVV,KN -qu = —vaVd%KN
N <|V1/f|2V¢—(V¢~Vw)VIﬂ>
—kN -
VY12
<<w x Vé) x w)
—«N -
VY2
kN ((Wf X V¢) x VI//) VY x V9|
VY x V¢l IV 12
VY x V|
VY12
VY x V9|
VY2
_v. ((Wf X Vo) x vw) VY x VoI

=—kN- (Vi xT)

—V (T x V)

VY x Vo Vg2
which is the right-hand side of the evolution equation in the third method. This means t
all the evolution equations are equivalent. We summarize this result in the following:

PROPOSITIONS.

PoyiN - Vg = —V . ( Pyy Ve |W|> Py Vol

|Poy Vol IV

The resulting evolution equation is valid in any dimension and thus it is possible to stu
for example, minimal surfaces on hypersurfaceR1in

We also have the property
PrROPOSITIONG. The evolution equation is degenerate second-order parabolic.

Thus we use second-order central differencing in space with third-order TVD-RK
time to numerically solve the evolution equation. We also regularize the equation to rem
the singularities arising avy| = 0 and|Py,, V¢| = 0. To satisfy the CFL conditionAt
needs to be less than a constant multipleaP.

In Table IV, we see that the method is second-order accurate. This result was obtal
by studying a circle moving by geodesic curvature flow on a sphere.

In Fig. 10, we show a curve moving on two mountains. The curve needs to move o
the mountains before it can shrink to a point and disappear. In Fig. 11, we show a cL
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FIG.10. The surface, two mountains, is shown on the left and the evolution of a curve under geodesic curva
flow is shown on the right. The curve is shrinking but needs to move over the mountains before it can disapp

moving on a bent plane. Note that the surface has a kink in it. The curve navigates over
without any problems. In Fig. 12, we show a curve on a cylinder. The curve evolves ¢
wraps tightly around the cylinder, forming a circle. This is a geodesic curve for the surfa

10. WULFF FLOW

We now consider the problem of evolving a curve by Wulff flow on a surface. Th
means minimizing the Wulff energyy B(v)ds, whereg: > — (0, oo) andv is the unit

-05 -0s

-05 .05

FIG.11. The surface, a bent plane, is shown on the left and the evolution of a curve under geodesic curve
flow is shown on the right. Note the surface has a kink in it and the curve shrinks over this kink without a
problems.
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FIG. 12. The surface, a cylinder, is shown on the left and the evolution of a curve under geodesic curvat
flow is shown on the right. The curve ends up wrapping tightly around the cylinder, forming a geodesic curve
this case a circle, on the surface.

normal of y lying on the surfaceM. We only study the case of convex Wulff energies
(see Proposition 8, below). Also, note that whee= 1, the Wulff energy is the length of
the curve. Thus Wulff flow is a certain generalization of geodesic curvature flow whi
is related, for curves ilR? and surfaces ifR3, to crystal shapes (see [28]). We make a
homogeneous degree-one extensiofl td R® and then rewrite the Wulff energy using our
usual representation to get

Pyy Vo >
E(®) = — |5(¥)8 \% Vo|dx.
(@) /R3ﬁ<IPWV¢>I W)8(P)IVY x V| dX

ProPOSITION7. The Euler-Lagrange equation of this energy is

0=—V - (Pyy VB(Pyy V@)V ()5 ().

So the evolution equation, enacting the usual replacement to the delta functions, ca
written as

|Pyy Vo
[V

This moves a curve by Wulff flow on a surface. The evolution equation also satisfies

¢ =V - (Poy VB(Pyy VY)V|VY])

PROPOSITION8. The evolution equation is degenerate second-order parabolic if

Ty
[Pyy V|

is nonnegative definite.
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To see that the equation we derived is the same as when projectifiRy teeolution
equation on the surface, we note that for curveRinwulff flow is given by

o=V -VB(VP)|Ve|.

So givenx on M andé,, &, & an orthonormal basis fdR® with & = % at x, we can

defineVS atx and, thus, the equation on the surface takes the form
¢ = V- VOB(Vo9)|Vo9),

or, in detail,

dr = (31318 (01081 + 02082)) + 02(328 (31081 + 3208)))\/ (016)2 + (926)2.

This can then be written as

¢t = Pyy V- (Pyy VB(Pyy V)| Pyy Vo,

which is equivalent to the equation derived using energy minimization. Note that higt
dimensions can also be considered by using the same equation.

We numerically solve the evolution equation using second-order central differencing
all spatial derivatives. The time derivative is discretized using a TVD—RK of third order. Tl
equation is also regularized at the singularities that occlW &{ = 0 and| Py, V¢| = 0.

In Fig. 13, we show a curve moving on the bottom of a paraboloid. The Wulff energy v
used was with a smoothed-out versionggk) = |X1| + |X2] + |X3]. Its exact form is

B(X) = \/xf+62+ \/x§+e2+ \/x§+62,

with ¢ = 0.1. Thus the curve develops a squarish shape while shrinking. In Fig. 14, \
show a curve moving on a bent plane. The curve once again develops a squarish shap
we see that computing over kinks in the surface, which cause kinks in the curve, is ni
problem for our algorithm.

FIG.13. The surface, the bottom of a paraboloid, is shown on the left and the evolution of a curve under Wi
flow, with 8(x) a smoothed-out form dk; | + |X.| + |Xa|, is shown on the right. The curve shrinks, developing a
squarish shape on the surface before disappearing.
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FIG. 14. The surface, a bent plane, is shown on the left and the evolution of a curve under Wulff flow, wi
B(x) a smoothed-out form ak;| + |X,| + |Xs], iSs shown on the right. The curve shrinks, developing a squarist
shape on the surface before disappearing. Note that the kink in the surface does not present any problems.

10.1. Wulff Minimal Curves

The evolution equation for Wulff flow can be slightly altered to give a method for findin
Wulf minimal curves on surfaces. Given a set of pointdvbywe want to find the curve on
the surface that passes through these points with the minimum Wulff energy. We call
given points boundary points. Thus Wulff minimal curves are the one-dimensional vers;
of Wulff minimal surfaces (see [6]). This problem may be useful in the study of propertit
of crystals on surfaces.

For 8 =1, we are searching for the curve on the surface of minimal length that pas:
through the boundary points. For general surfaceRinthe curve will be piecewise
geodesics. We find the solution to this problem by solving to steady state the zero le
set of¢p on M in the evolution equation

¢t = —uPyyxN - Vo,

wherepu is smooth withy (x) = 0 if x is a boundary point and(x) = 1 outside a small
neighborhood of the boundary points. The initial cung,is chosen to pass through the
boundary points. This approach is an extension of the one used in [6].

In the case where the boundary points consist of just two pairisdb, andyy is chosen
carefully, we get the geodesic betweeandb. However, if the initial curvey is not chosen
to be topologically equivalent to the answer, parts of it may merge at a later time and
evolve into what we want.

For generapB, the evolution equation we are interested in is

|Pvy Vol

=uV - - (PyyVB(Pyy, V)|V
¢t = uV - (Pyy VB(Pyy V@) |VY]) VU

Numerically, the evolution equation is solved using the same finite-difference schemes
the Wulff flow case. The is just treated as a coefficient in front of the rest of the equatior
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For higher dimensions, the same evolution equation holds since it is already in its gen
form. Thus it is possible to study Wulff minimal surfaces constrained on hypersurfac
in R%.

Creating ayy, or the corresponding initial level-set function, that passes through tl
boundary points may not be easy, but sometimes we can simply takeag curve on the
surface that encompasses all the boundary points. Thus the éisabasy to construct.
When we run the evolution equation in time, the curve will shrink and sometimes end
going through all the boundary points. Other, more robust interpolating methods can :
be used (see [32)).

11. FIXED ENCLOSED SURFACE AREA

We now consider the problem of evolving under a certain motion a cuiwe a surface

M with the constraint that the surface area of the part of the surface enclogad fiyed in
time. For curvesiilR?, this can be used to study bubbles or other fluids that conserve enclo:
area or volume (see [14, 33]). We mainly look at geodesic curvature flow and occasion
comment on more general motions. In this case, the energy involving the length of the ct
coupled with the constraint gives us the energy we are interested in. The constraint ca
translated as the condition thﬁgg H(—¢)3(¥)| V| dx remains constant throughout time.
Note that this means if is a collection of curves, then the total enclosed area is fixed, n
the area enclosed by each curve in the collection. So the new energy to consider is

E@®) = /Rsfs(lﬂ)5(¢)lpwv¢||VW|dX—?»/Rg H(=¢)s(¥)|Vy|dx,

wherea is a Lagrange multiplier.

For other flows, we can replace the first integral with the energy corresponding to
type of flow. This just means that we are coupling a different energy with the constrai
For example, if we want Wulff flow then we use the Wulff energy. Details of this are give
when we discuss Wulff shapes on surfaces.

The Euler—Lagrange equation then becomes

0— _v. ( Py Vo
[Py Vol

Under our usual replacement fé(y)8§(¢) and previous results, we get the evolution
equation

IVW) (V)8 (@) + AIVYI8(4)d(9).

¢t + APy Vo =V ( Pry Vo IVI//|> |Pyy Vol

|Poy Vo V|

We can find the value of by enforcing the constraint

d
0= a/ H(—$)5 ()| V| dx
R3

- /R HS (@)W |V Y| dx

- V. vw¢v>—APv)35 Voldx.
/Rs( <|Pwv¢|| vl [Poy Vol | $(@)8(¥)IVy|dx
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Solving for in this equation gives

Jrs V- (R 191 )5@)8 () V] dx
Jrs IPoy Vo 18()8 (W) V| dx

All this together defines the evolution equation fprthat moves a curve by geodesic
curvature flow while keeping the enclosed surface area fixed. This equation is also v
and can be used in higher dimensions. For more on the process of fixing enclosed are
volume, see [14, 33].

Numerically, the right-hand side of the evolution equation is handled in a manner c
responding to the flow. The left-hand side is in Hamilton—Jacobi form and we solve
as in the constant normal flow section (i.e., using a third-order TVD-RK in time and
Hamilton—Jacobi fifth-order WENO-LLF in space). At each Runge—Kutta step, we sol
for A by using a second-order approximation for the integrals, whose integrands are c
nonzero near the front because of the delta functions, and gsifigm the previous
step.

When deriving the evolution equation from the correspon@Agquation with general
B

Ot + AVe| =V - VB(VP)| V|,
with

Jre V- VB(VH)|IVEIS(9) dx

A=
Jrz 1V$18(¢) dx

’

we note that all the terms have been considered previously excepttédmm. Fori, we
would like to take the integrals over the surface instead of &fefThis means that we
change the integral fronfi,, dx to [; 8(¥)|Vy| dx. Using this, the rest of the terms carry
over as before and so projecting tRé equation onto the surface gives the same evolutiol
equation derived above.

We can also consider flows that are not minimizations of energies. If we want the cul
to move according to the equation

¢ =—v-Vo,

wherev can depend off, ¢, and their derivatives, then the constrained motion can be give
by

¢t + APyy Vo| = —v - Vo,

where

 Jrev - V)@ VY| dX

A= .
Jrs |Puy VoI5 (@)8(y) V| dx

This will move a curve according towhile keeping the enclosed surface area fixed. Not
that this makes no mention of the evolution equation coming from minimizing an ener
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FIG.15. The surface, a paraboloid, is shown on the left and the evolution of a curve under geodesic curva
flow with a fixed enclosed surface area is shown on the right. The initial curve evolves to a steady state cun
circle symmetrically wrapped around the paraboloid.

However, when there is an energy for the flow, such as in geodesic curvature flow
Wulff flow, the evolution equation makes more sense. Also, noteitimhow not exactly

a Lagrange multiplier. Higher dimensional motions preserving an enclosed area car
considered using the same evolution equations.

In Fig. 15, we show a curve moving by geodesic curvature flow with a fixed enclos
surface area constraint on a paraboloid. The steady state curve is a circle symmetri
wrapped around the paraboloid. In Fig. 16, we show a curve moving by the same flow
a sphere. The initial curve is elliptical in nature. The steady state curve is a circle on
sphere.

-04 -04 04 -04

FIG. 16. The surface, a sphere, is shown on the left and the evolution of a curve under geodesic curva
flow with a fixed enclosed surface area is shown on the right. The initial curve evolves to a Wulff shape, a cil
on the sphere.
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11.1. Wulff Shapes

We can get further interesting shapes on surfaces by running the evolution equatior
Wulff flow with a fixed enclosed surface area and looking at the steady state of the z
level set ofgp on M. For M a plane (i.e., for curves iR?), this is a Wulff shape, which is
the shape certain crystals form (see [28, 22]). These shapes are also of interest as sul
in R3. Following the steps for deriving the evolution equation for the enclosed surface a
preserving motion on surfaces, we start with the energy

Py, V
E(¢>)=/ ﬁ(M)|Pv¢,V¢||w|a<w>6(¢)dx—x/ H(—$)8(p)| V| dx,
R3 |Pyy V| R3

wherea is a Lagrange multiplier, and get the evolution equation

|Pyy Vol

¢t + APyy V| =V - (Poy VB(Pyy Vo) |V]) VU

’

where

o Jeo V. (PoyVB(Poy V) VNI @) (1) VY] dx
s |Pyy Vo 8(9)8(y) | V| dX :

The steady state curve o of this evolution equation gives a Wulff shape on the surface
Wulff shapes in higher dimensions can be found by using the same equations.

In Fig. 17, we show a curve moving under Wulff flow while fixing the enclosed surfac
area. The steady state shape is a Wulff shape on the surface and is squarish in nature sin
B(x) used was a smoothed-out versiorafl + |x2| + |X3|. More complicated curves and
surfaces with topological changes in the curves can also be considered using our algori

=05 -5

05 -05

FIG. 17. The surface, a bent plane, is shown on the left and the evolution of a curve under Wulff flow with
fixed enclosed surface area is shown on the right. The initial curve evolves to a steady state curve, a smoothe
squarish shape on the surface.
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12. MOVING CURVES ON MOVING SURFACES

We now extend our results to include moving curves on moving surfaces. Since the sur
is moving,» now depends on time, with the zero level segadt any time giving the surface
at that time. Also, the curve on the surface at any time is given by the intersection of
zero level sets ofy and¢ at that time. To follow the surface and curve, we need only follov
Y and¢ or, more accurately, the zero level set/ofind the intersection of this with the zero
level set ofp. The initial surface and curve are given and represented by an ifitialde.

Suppose the motion we want for the curve satisfies on fixed surfaceg (fibeed in time)

$r+v-Vop=0

for some velocity field tangent to the level-set surfacesyothat can depend oy, ¢, and
their derivatives. Suppose the motion of the surface itself satisfies

Yt+w-Vy =0

for some velocity fieldv that can depend o and its derivatives but not afin any way.
The fact thatw does not need to be parallel to the normal vector of the surface means
surface is allowed to twist within itself without changing its shape. Thus we can get t
velocity field under which to move the curve by adding the two velocity fielédsd w.
This means the evolution equation is

¢+ v+w) Ve =0.

Note that the curve and also the surface may undergo merging during the evolution proc

As an example, suppose we want the curve to move outward in its normal directior
unit speed. Then we get- V¢ = |Pyy, V¢|. Suppose we also want the surface to move
outward in its normal direction at unit speed. The equation for this is

Y + |V | =0,

with w = 2 Thereforew - V¢ = YL-Y¢ S0 the sum of the two velocity fields gives the

V| [V
evolution equation for the desired motion of the curve,
V- Vo
¢+ |Pyy Vol + ————— =0.
! Vv

Another example is where the curve itself does not move but the surface moves ur
the velocity fieldw. Thus the motion of the curve iR® is due only to the motion of the
surface. This specific problem, called region tracking, was first solved in [2] using the sa
representation we use here. In this case,

Yi+w-Vy =0
is the equation for the motion of the surface, and thus,
$pt+w-Vp=0

is the equation for the motion of the curve.
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TABLE V
Order-of-Accuracy Analysis for a Circle on a Sphere, Both
Moving at Unit Speed in the Normal Direction

Grid size Error Order
20x 20x 20 0.000464692
40 x 40 x 40 381069x 10°° 6.9301
80 x 80 x 80 537093x 1077 2.8268
160 x 160 x 160 668242x 108 3.0067

Note.The results show third-order accuracy.

All this can also be done for other previously described motions except for the case «
fixed enclosed surface area. In this case, we need to clarify what we really want since
surface may shrink until its total surface area is smaller than the enclosed surface area:
fixed. Higher dimensions are also covered by the above evolution equations.

A drawback to this method is that spurious curves may appear when surfaces merge.
happens when a part of the surface with negative valuggsmfches a part of the surface with
positive values. At the place of contact, a zero level sétisfcreated between the positive
and negative values and so gives rise to a spurious curve on the surface. If the probler
are considering is curves on surfaces, then this is a wrong answer which cannot be e
fixed. But if we look at a different problem, then the spurious curve actually makes sen
Let us think of the curve as the boundary of the set of negative valugonofthe surface
and the movement of the curve as being due to the expansion or contraction of that set.
negative values may denote one substance and the positive values a different substan
in a two-phase flow. When negative and positive values touch, a new boundary for the
of negative values needs to be created and, hence, we should get a curve appearing th
separate the positive and negative values. This way of thinking not only is convenient h
but also may be useful in physical applications.

Table V shows that our method has a high order of accuracy for the case of a circle
a sphere, both moving at unit speed in the normal direction. In Fig. 18, we show initially
circle on a plane. The circle is moving by constant normal flow on the plane and the plz
is moving by constant normal flow iR3. The final picture shows at the final time a dilated
circle on a translated plane. More complicated curves and surfaces can also be handle
our algorithm.

13. LOCAL LEVEL-SET METHOD

A curve is a one-dimensional object, so to solve an evolution equation in &F if
overly expensive. In most cases, we only need to solve the equation in a neighborhoo
the curve. Exceptions, however, include getting signed distance functions to curves, wi
the ¢ is needed over the whole surface, or cases where curves can appear out of now
for example, in the active contour method of Chan and Vese [4]. But in most of the motic
we have studied here, the evolution equation is only needed in a neighborhood of the cL

We have succeeded in localizing near the surface (i.e., retaining only the grid points 1
are near the surface). This is optimal for problems that gegefined on the whole surface
(e.g., getting signed distance). We create a data structure to hold only the grid points clo:
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FIG. 18. This is a moving curve on a moving-surface computation. The original surface and curve are shc
in the two plots on the top. The final surface and curve are shown in the two plots below. The surface and c
are both moving by constant normal flow. The surface translates to the left while the curve shrinks.

the surface. The structure only needs to be created once, at the beginning, since the st
is static. This immediately cuts down on our memory storage. Also, we solve our par
differential equations only at the retained grid points in this structure, thus greatly speec
up the method. To determine which grid points are near the surface and thus should |
the structure, we look at the distancesRf of those points away from the surface. Only
points under a certain value, a constant timeg are retained, which makes this method
optimal wheng is needed over the whole surface. We use the fast marching method o
at the beginning to create the distance values at the grid points.

In actuality, we only solve our partial differential equation in a neighborhood of tt
surface smaller than the neighborhood of retained points. This is done so that the ste
of the finite-difference schemes we use will not exit the neighborhood of retained poir
Fortunately, the fast marching method we used to obtain distance to the surface, as ¢
product, also gives an ordering of the points with respect to their distance values, from I
to greatest. We can then use this to enforce Neumann boundary conditions on the bour
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of the smaller neighborhood by extending the values there, following the normal vectors
the boundary, to the larger neighborhood. Note that the normal vectors of the boundary
in the same direction as the gradients of the distance values and thus following the orde
given by the fast marching method correctly propagates the values. So even though
partial differential equation is only solved in the smaller neighborhood, the finite-differen
schemes will use values in the whole neighborhood. The method, under these operati
still retains the same accuracy.

We may also want to make sure that the numerical boundary conditions will not advers
affect the behavior of on the surface. For this, we can make the level-set surfacgs of
perpendicular to the surface while fixing the valueg oh the surface. This is accomplished
using the evolution equation described in Section 8 for this purpose. The fast march
method can also be used instead. The process of making the level gepedendicular
to the surface, however, may reduce the accuracy of the method.

So far, we have constructed a local level-set method that is optimal for solving par
differential equations over the whole surface but not for solving just in the neighborho
of a curve. For this, we currently have a method that has the potential to be optima
both speed and memory but that has not yet been programmed in such a way. It simil
involves retaining only the grid points that are near the zero level setsofl¢, solving in
a smaller neighborhood of these retained points, and making the level getnafp well
behaved as described in Section 8. This ensures that the boundaries of the neighborho
not affect the motion of the curve. However, the data structure is no longer static since
curve is moving, taking the neighborhood along with it. This aspect slightly complicat
the problem and especially the programming issues.

Table VI shows the accuracy of the local level-set method applied to constant normal fl
The evolution equations are solved only in a neighborhood of the surface. Also, the level.
of ¢ are not enforced to be perpendicular to the surface. The test includes all elements o
method, including the plotter. It was generated by looking at a circle moving on a sph
before merging occurs and the results show roughly second-order accuracy. This ag
with the global method when the plotter is included in the error computations. Running 1
algorithm to make the level sets @fperpendicular to the surface will slightly move the

TABLE VI
Order-of-Accuracy Analysis for the Local Level-Set Method
for Constant Normal Flow

Grid size Error Order
8x8x8 0.053125
16 x 16 x 16 0.016274 1.7068
32x32x 32 0.00561706 1.5347
64 x 64 x 64 0.00173415 1.6956
128x 128x 128 0.000433395 2.0005
256 x 256 x 256 0.000169642 1.3532
320 x 320x 320 0.000107546 2.0425

Note.The grid size represents the equivalent-sized grid if all grid points
were used. The example considered was a circle moving on a sphere. Because
of the behavior of the error for the 256256 x 256 case, we only say the
method is roughly second-order accurate. Note that we can run the program
on a grid equivalent to 328 320 x 320 with this algorithm.
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TABLE VII
Order-of-Accuracy Analysis for the Local Level-Set Method
for Distance Functions

Grid size Error Order
10x 10x 10 0.04269
20x 20x 20 0.0300296 0.5075
40 x 40 x 40 0.0170282 0.8185
80 x 80 x 80 0.00864061 0.9787
160x 160x 160 0.00435087 0.9898
320x 320x 320 0.00213815 1.0249

Note.The grid size represents the equivalent-sized grid if all grid points
were used. The curve considered was a circle on a sphere (as in Table I1).
The method is first-order accurate. Note that we can run the program on a
grid equivalent to 326 320 x 320 with this algorithm.

contours on the surface and reduce the accuracy to first order. We remark again that
can be used that are much finer than those used for the global method that solves in :
R3. Table VII shows the accuracy of the local level-set method applied to finding sign
distance functions. Once again, the level setg$ afe not enforced to be perpendicular to
the surface. The result is first-order accuracy, as in the global case. The table was gene
by looking at a circle on a sphere, away from kinks. Note that much finer grids can be u
than the ones used for the global method. All in all, the local level-set method is faster :
needs less memory than the global method while still being able to preserve the accu
of the method.

14. HIGHER DIMENSIONS AND CODIMENSIONS

We can further extend our method to higher dimensions and codimensions (see [3]
using more function®;, ..., ¢x andyr, ..., ¥m in R", for k + m < n. The intersection
of the zero level sets af, .. ., ¥, gives the constraint, and the intersection of this witt
the intersection of the zero level setsgaf . . . , ¢k gives the object to be moved under the
constraint. This means that the constraint surface has dimemsian and on this, we move
an object with dimensiom — m — k. The actual motions are carried out under a syster
of evolution equations fopy, ..., ¢«x. Note, however, that the fact that our methods ar:
grid based, usually using uniform grids, means the size of computer memory needed tc
simulations in very high dimensions may be restrictive, even with a local level-set meth

15. CONCLUSION

We have devised a level-set-based method for moving curves constrained on surfe
This method can accurately handle a wide variety of curves and surfaces and motior
can also extend all the results of the origiR&llevel-set method and thus conceivably has
a wide range of applications. Basic applications already allow us to create signed distz
functions, geodesics, and various interesting crystal shapes on surfaces. The limitatiol
our method are just the limitations of any level-set based approach. Finally, the metho
easy to implement because complex surface topologies and procedures such as merg
breaking or keeping the curve on the surface are all handled automatically.
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16. PROOFS OF PROPOSITIONS

These “proofs” are really only formal derivations. For example, we have not defined t
precise spaces of functions we are using. Nevertheless, we present them as a formal ¢
to why the method seems to work well.

Proof of Proposition 1. We prove that these identities hold®R? for arbitraryn.

(@) This follows from the fact thal,, is a symmetric matrix an@2 = P,,.
(b) This follow from the fact that

(va)iu = PxVu-g = Vu- Pxg.

(c) We prove this property by brute-force calculations and, for simplification, summir
over repeated indices. Let be the vector with 1 for itéth component and 0 for the rest.
This means for thgth component,&); = 6;;.

So we have
PouV - (PyuX) = (Pyui V)i (Pyu X)i,
= V((PVux)i) : PVua

Uy, Uy Uy, Uy
=[5 0)x] (- et)
|:< 1] |VU|2 ] . 1 |Vu|2
Uy, Uy, Uy, U, Uy, Ux
_ 5”— _ Uxi M Xj _ 8”' e e Xj el
|Vu|? X |[Vu|2 % |Vul?

Calling the first terml and the second terd, we have

quuX
= [(5” |Vu|2])x'} TV R,

Uy, Uy Uy, Uy,
J=— (8 — =2 ) Xj| =3
VUl « VUl

_ Uy, Uy, (X )xk <UX Uy; Xi > Uy, U

and

|Vu|2 |Vuiz /, Ivul?
. kauxi (X| )Xk UXi qu (X] )XkuXk Uxi Uxi qu X] kauxi
[Vul? [Vul IVulz /. IVul?

[ Ux;Ux X Uy, Uy,
|[Vu|? % [Vu|?
_((UxUxjx | Ux Uxxe 2Ux; Uy, Uy, U ) X U U
|Vu|? |Vu|? |Vul* [Vu|2
_ uXkquXka uXi qu uXkuXiXka
|Vu|? |Vul4

Uy UXJ Xi Uy, Ux; x,
Xi — 2 2
|Vu| [Vu|
V|Vu
|Vul -

= PyyX-
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So altogether,

1

PouV - (PyyX) = V - (Pgu X|V ,
Vu (Vu ) (Vu | U|)|VU|

which completes the proof.

Proof of Proposition 2. We prove the results in general fBf'. We sum over repeated
indices for convenience.

(a) Fix a pointx on M. Letv be the outward unit normal vector i at x. Now, given
two orthonormal bases R", ¢ and&, withi =1, ..., n, let§; ands; be (P, V); under the
framesg and§, respectively. This means

whered, andd; correspond to the framesandé , respectively. Because of orthonormality,
we have tha& = a;je;, with thea;; forming an orthogonal matrix (i.eaj ax = aji aki =
8ik)- Thus, we havé; = a;8;. Therefore,

&5 =8ad.

Now, takingg ,i =1, ..., n,tobethe standard orthonormal basiRirandg,i = 1, ..., n,
to be an orthonormal basis Bf* with &, = v, we get

88 = VS

es = P,V.
So

vS=Pp,V,

and, especially, iti is a real-valued function iR", then
vSu = P,Vu.
(b) Continuing with the above computations, givéra vector field inR", we have
(5iX, &) = (& X, @)
Therefore,
VS.X =P, VX.

Proof of Proposition 3. Apply Proposition 7 with3(p) = |p|, p € R%.

Proof of Proposition 4. See proof of Lemma 1 in [3].
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Proof of Proposition 5. See main body of section for proof.

Proof of Proposition 6. With (p) = |p|, we getVa(p) = % andV28(p) = ﬁ Pp.

So
Pv,/,V(j)
VB[ == ) = Pry, vy
g (|PV.//V¢|) P Ve

Therefore, using Proposition 8, we find that the principal matrix for the right-hand si
of the evolution equation i®yy Pp,, v, Pvy, and also that sinc®p,, v, is nonnegative
definite, with one zero eigenvalue and the rest being equal to one, the evolution equatic
thus degenerate second-order parabolic.

To actually find the eigenvalues of the principal matrix, we notethatand Py, V¢ are
eigenvectors corresponding to the zero eigenvalue, $tag&y» = 0 andPp,, vy Pyy Pyy
V¢ = Pp,, vy Pyy V¢ = 0, respectively. Also, given any other vectore R3, perpendic-
ular to these two eigenvectors, we have

va PPW,V(Iﬁ vav = Pv]p Ppwlv(pv = val) = .

Therefore, we can conclude that the principal matrix has two zero eigenvalues, with all
rest being equal to one.
Proof of Proposition 7. See proof of Lemma 2 in [3].

Proof of Proposition 8. Let F(q, X) = Pyy VB(Pyy@)|VY|. Then we have

(Fi)g (. X) = Pyy V2B(Pyy Q) Poy VY,

whereV?2g is the Hessian matrix fo.

Therefore, the principal matrix fov - (Pyy, V 8(Pyy V)| V) 'P‘ng‘w' is

Py V2B(Pyy Vo) Pyy |Poy V|,

which can be rewritten as

Pyy Vo
Py, VB —"—— | P
v ﬁ(|Pw,V¢|) e

sinceV28 is homogeneous of degreel.

Therefore, if the matriN = Vzﬂﬂ:ﬁzz‘) is nonnegative definite, thed N, > 0 for all
x € R3. Thisimplies that for any € R3, takingx = Py, y givesy” Py, N Py, y > 0and so
Pvy N Pyy is also nonnegative definite. Note théi/ is an eigenvector corresponding to
the 0 eigenvalue.

So we have shown that M is nonnegative definite, then the evolution equation

|Poy VY|

p=V- (Pw,Vﬂ(Pwa)IVWI)W

is degenerate second-order parabolic.
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